Red, Yellow, and Blue Luminescence by Graphene Quantum Dots: Syntheses, Mechanism, and Cellular Imaging

Tian Gao,† Xi Wang,† Li-Yun Yang,† Huan He,† Xiao-Xu Ba,† Jie Zhao,† Feng-Lei Jiang,*† and Yi Liu*†‡§

†State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
‡School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
§College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, P. R. China

ABSTRACT: Owing to their excellent photoluminescence (PL) properties, good biocompatibility, and low toxicity, graphene quantum dots (GQDs) are widely applied in bioimaging, biosensing, and so forth. However, further development of GQDs is limited by their synthetic methodology and unclear PL mechanism. Therefore, it is urgent to find efficient and universal methods for the synthesis of GQDs with high stability, controllable surface properties, and tunable PL emission wavelength. By coating with polyethyleneimine (PEI) of different molecular weights, blue-, yellow-, and red-emitting GQDs were successfully prepared. By transmission electron microscopy, atomic force microscopy, and dynamic light scattering, the characterization of size and morphology revealed that blue-emitting PEI1800 GQDs were monocoated, like jelly beans, and red-emitting PEI600 GQDs were multicoated, like capsules. The amidation reaction between carboxyl and amide functional groups played an important role in the coating process, as evidenced by IR spectroscopy and theoretical calculation with density functional theory B3LYP/6-31G*. The PL-tunable GQDs exhibited an excellent chemical stability and extremely low cytotoxicity, and they had been shown to be feasible for bioimaging, making these GQDs highly attractive for a wide variety of applications, including multicolor imaging and bioanalysis.

KEYWORDS: Graphene quantum dots, polyethyleneimine, photoluminescence tunable, coating nanomaterials, photoluminescence mechanism, cellular imaging

1. INTRODUCTION

Graphene quantum dots (GQDs) show great potential in the fields of photoelectronics, photovoltaics,¹,² biosensing,³ and bioimaging⁴ owing to their unique photoluminescence (PL) properties, including excellent biocompatibility, low toxicity,⁵ and high stability against photobleaching and photoblinking.⁶ Typically, GQDs possess a mono- or multiple-layered graphite core, with chemical groups on the edge. Unlike pristine graphene, which does not emit in the visible light region, GQDs have a suitable band gap for visible light emissions due to their structural defects, elementary composition, and surface groups.⁹⁻¹² Considerable research efforts have been devoted to exploring different kinds of synthetic methods, which can be sorted into top-down nano cutting methods and bottom-up organic approaches.¹³,¹⁴ Top-down methods were widely used to prepare GQDs for their cheap raw materials, simple synthetic routes, and normal reaction conditions. Varieties of carbon resources with an sp² carbon structure, like graphene oxide, carbon fiber, carbon nanotubes, and carbon black, can be used as raw materials to get GQDs by cutting with acid oxidation, hydrothermal, or electrochemical methods.¹⁵ It is worthwhile mentioning that single-layer GQDs could be obtained by “one-pot” acid oxidizing synthetic method by cutting carbon black, which is easily available and low in cost.¹⁶ This work is creative and important to expand the applications and scale of production of GQDs.

Now, there are still two vital challenges for better application of GQDs, namely (i) designing universal synthetic methods for tunable PL and (ii) understanding the exact PL mechanism of GQDs by controlling the structure. To expand the possible applications of these PL materials, it is highly desirable to develop a strategy to tune their PL properties. Indeed, single color detection and imaging are unattractive for most applications due to their low signal to noise ratio. However, multichannel detection and multicolor imaging have high signal to noise ratios because the background results from a low bandwidth interference. Thus, a tunable emission maximum is especially important for GQDs because it enables these...
materials to be used for multichannel detection and multicolor imaging. Furthermore, various emission colors can be obtained by well adjusting PL-tunable materials, thus showing an even greater potential in imaging and quantum dot light-emitting diodes.7,18 Previous reports have shown that the peak emission wavelength of GQDs shifts with changing excitation wavelength. The shifted PL intensity sharply decreases as the excitation wavelength moves away from the peak wavelength of the GQDs’ absorbance. This kind of excitation-dependent emission could not be truly labeled as “tunable” because the shifted PL intensity is so small that it is inadequate for real biomedical applications.19 Researchers have done much work on PL-tunable GQDs. Especially, Tetsuka’s group pioneered to prepare amino-functionalized GQDs to tune the emitting color from blue to yellow and Tseng’s group obtained four kinds of color-emitting GQDs by using ammonium hydroxide and thiourea to control synthetic conditions and applied them in bioimaging.10,20 Recently, Wanunu’s group creatively synthesized PL-tunable GQDs from blue to yellow by peptide decoration and explored further functionalization with DNA.21 However, until now only few PL-tunable synthetic methods are reported, which are still far from adequate for GQDs to be widely applied. Therefore, it is urgent to develop novel methods to synthesize GQDs with tunable PL covering the entire visible spectrum.

To engineer the PL properties of GQDs, we must first elucidate the PL mechanism.14,22−24 Only by understanding the PL mechanism completely, can we really design truly “tunable” GQDs. Graphene shows quantum confinement effects because of the infinite Bohr diameter of excitons.25 Thus, GQDs exhibit a nonzero band gap and fluorescence upon excitation.26−28 This band gap could be influenced by various factors. For example, in recent years, researchers speculated that the particle size, edge state, element content, and type of functional group were the most critical factors affecting the PL mechanism of GQDs.29−32 These factors are inevitably convoluted with each other; thus, in a given system, the effects of each of these factors are difficult to determine. Therefore, isolating the effects of a single factor when devising a one-step synthetic method is incredibly difficult because most changes to the method affect multiple critical factors. For example, when trying to modify the surface of GQDs from the beginning, it is hard to keep both the carbon-bone structure and the size of inner graphene unchanged. Therefore, it is worthwhile to attempt to find a universal method to change the PL properties of GQDs by one step further treatment. The coating reaction for GQDs is exactly one of the choices to fulfill the requirements. By coating GQDs with materials, it is easy to form a core−shell structure to protect the inner original nanographene core and have a passivation effect to make it more stable. At the same time, coating materials have a potential to change PL properties of GQDs to implement multiple color syntheses.

In previous studies, polymers, such as polydopamine,33 poly(ethylene glycol) (PEG),15,34 and polyvinyl pyrrolidone (PVP),35 have already been employed as coating materials to improve PL properties of carbon nanodots (CNDs) and GQDs. Coating GQDs with these polymers results in surface functionalization, surface passivation, and enhancement of quantum yields (QYs) of GQDs. However, previously these coating materials were rarely shown to enable tunable PL emission.36 Polyethyleneimine (PEI) is a typical positively charged polymer, with rich amino groups, which is widely used in gene and drug delivery. Researchers also designed PEI/ CNDs core−shell structures as nano probes, DNA viral deliverers, and biosensors.31,37 PEI is a nitrogenous polymer, which has great potential to modify GQDs by tuning their PL properties and make it possible to do multicolor imaging due to their excellent biocompatibility. In addition, because the PL mechanism of coated GQDs is seldom investigated, we do not understand how these coatings may affect the PL mechanism. Hence, it is desirable to devise both experimental and theoretical methods to study the PL mechanism of polymer-coated GQDs.

In this work, yellow-emitting bare GQDs were prepared from carbon black. Blue-emitting PEI600 GQDs and red-emitting PEI1800 GQDs were obtained by coating with PEI of different molecular weights. The structures of PEI-coated GQDs were investigated by a series of characterization methods. Moreover, a theoretical study with density functional theory (DFT) B3LYP/6-31G* was used to obtain the energy gap and charge density.38 Then, PL mechanisms of PEI-coated GQDs were discussed by combining both the experimental and theoretical results. After evaluation of their stability and biocompatibility, these GQDs were applied in cellular imaging.

2. EXPERIMENTAL SECTION

2.1. Chemicals and instruments. Carbon Black VXC-72 was purchased from Cabot Corporation (Boston, MA). PEI with molecular weight of 600 and 1800 Da was purchased from Aladdin (Shanghai, China). Nitric acid (HNO3), disodium hydrogen phosphate (Na2HPO4), potassium dihydrogen phosphate (KH2PO4), sodium chloride (NaCl), potassium chloride (KCl), dimethyl sulfoxide (DMSO), quinine sulfate, Rhodamine B, 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and fetal bovine serum (FBS) were purchased from Sigma (St. Louis, MO). All chemicals were of analytical grade and were used as received. All solutions were prepared with deionized (DI) water from the Mill-Q-RO4 water purification system (Millipore).

Fluorescence analysis was carried out on an LS-55 fluorometer (Perkin-Elmer). Absorption spectra were recorded by a UNICO 4802 UV−vis double-beam spectrophotometer. High-resolution transmission electron microscopy (HRTEM) images were obtained on a JEM-2100 (JEOL, Japan) electron microscope operating at 200 kV. Atomic force microscopy (AFM) images were obtained on an Ntegra Spectra AFM microscope (NT-MDT, Russia) with tapping mode. Fourier transform infrared (FTIR) spectra were obtained on a Thermo FTIR spectrophotometer. X-ray photoelectron spectra (XPS) were recorded with a KRATOS XSAM800 X-ray photoelectron spectrometer (Kratos Analytical Ltd, Manchester), using Mg as the exciting source. Ultrasonic treatment was carried out on a SCIENTZ-II D ultrasonic cell crusher (Ningbo Scientz Biotechnology Co., Ltd) at 950 W. Powder X-ray diffraction (XRD) spectra were obtained by a PANalytical B.V. (Netherlands) XPERT PXRD. Dynamic light scattering (DLS) was tested on a ZEN 3600 (Malvern Instruments, U.K.) DLS instrument. Zeta potential data were also measured on a ZEN 3600 Zetasizer analyzer (Malvern Instruments, U.K.). Time-resolved fluorescence spectra were recorded via QM4CW/Q11A steady state spectrophurometer systems (PTI). Cell imaging was done on a Perkin-Elmer Ultraview Vox confocal microscope (MA). All calculations were optimized with DFT (DFT−B3LYP/6-31+G*) methods39 using the Gaussian 09 program (Gaussian Inc., Wallingford CT, 2009).

2.2. Syntheses of GQDs. GQDs were synthesized by a low-temperature pyrolysis of VXC-72 carbon black in nitric acid. In a typical procedure, 0.4 g of dried VXC-72 carbon black was refluxed in 100 mL of HNO3 (6 mol L−1) for 24 h. The suspension, after cooling to room temperature, was treated by an ultrasonic cell crusher for 10 min at 950 W and then centrifuged (8000 rpm) for 10 min to obtain the supernatant. The supernatant was filtered through a 0.22 μm micromembrane filter (Millipore). Rotary evaporation was used to
were cultured in Dulbecco (HEK-293) and human primary glioblastoma cell line 87 (U-87) cells
° 37 solution of these three GQDs under room light (left) and 365 nm UV irradiation lamp (right). UV
powder are shown in Figure S2.
was obtained by freeze-drying. Photos of GQDs and PEI-coated GQD
obtain GQDs with tunable PL properties. A solid powder of the GQDs
were used to evaluate the biocompatibility of the obtained PEI1800
° added into each well and incubated at 37
° C for 4 h until the
emergence of a purple precipitate. Then, the medium was removed
and MTT solution without cells. To accurately measure the viability of
each test group, six replicate wells were used and all of the experiments
were repeated at least three times. The results were exhibited as the
mean ± standard deviation. The cell viability was calculated by the
following equation
cell viability % (OD samples − OD blank)/(OD control − OD blank) × 100%

2.4. Cell Culture. The human embryonic kidney cell line 293
(HEK-293) and human primary glioblastoma cell line 87 (U-87) cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% FBS, 1% penicillin, and 1% amphotericin at
37 °C in 5% CO2.

2.5. Cell Viability. For the MTT assay, HEK-293 and U-87 cells
were used to evaluate the biocompatibility of the obtained PEI1800
GQDs, uncoated GQDs, and PEI600 GQDs. A 200 μL suspension of
the two kinds of cells in the exponential growth phase were seeded
into each well of a 96-well plate at a density of 1 × 104 per well. After
being cultured for 12 h, GQDs with di
modi
ff
erent reagent dosages and reaction times were
tested. One typical synthetic strategy is shown in Figure S1. After 50
mg of GQDs were redissolved in 20 mL of ultrapure water, a portion
of PEI was added into the solution and the mixture was heated to the
boiling temperature. When a gel was formed, 10 mL of ultrapure water
was added to prevent it from drying and scorching. This procedure
was repeated three times to get PEI-coated GQDs. Ultrapure water
was added to bring the total volume up to 10 mL. After extraction by
ethanol (GQDs are insoluble in ethanol, whereas PEI is soluble) and
dialysis in a 3000 Da dialysis bag for 24 h, pure PEI-coated GQDs
were obtained. PEI with a different molecular weight was used to
obtain GQDs with tunable PL properties. A solid powder of the GQDs
was obtained by freeze-drying. Photos of GQDs and PEI-coated GQD
powder are shown in Figure S2.

2.6. Cell Imaging. U-87 cells in the exponential phase were seeded
into 6-well plates with aseptic coverslips at a concentration of 1 × 105
cells per well. These cells were cultured at 37 °C for 24 h, using 5%
CO2 for cell attachment. PEI1800 GQD, GQD, and PEI600 GQD (after
being filtered with a 0.22 μm PES membrane) solution, with a
concentration of 50 μg/mL in the culture medium, were added into
the U-87 cells to replace the original medium. After growing for 18 h,
PBS was used to wash the samples three times. To fix the cells, 4% paraformaldehyde was added at room temperature. After 30 min, the
samples were ready for imaging and the staining was visualized by a
Perkin-Elmer Ultraview Vox confocal microscope equipped with a
spectral detection system.

3. RESULTS AND DISCUSSION
Uncoated GQDs and PEI-coated GQDs can freely disperse in
water and appear light yellow in color. Figure 1 depicts the
fluorescence and UV–vis spectra of the diluted solution of the
resultant GQDs in aqueous solution. GQDs emit yellow light
with a peak at around 550 nm, whereas GQDs with both blue
and red light emission could be obtained by coating the GQDs
with PEI of different molecular weight (1800 and 600),
denoted as PEI1800 GQDs and PEI600 GQDs, respectively. In
aqueous solutions, PEI1800 GQDs exhibit blue fluorescence,
with λmax at 445 nm and a full width at half-maximum
(FWHM) of around 100 nm, and PEI600 GQDs show red
fluorescence, with a peak at 622 nm and a FWHM of around
100 nm. Figure S3a clearly shows the shift of the PL peak when
GQDs were coated with PEI600 and Figure S3b exhibits
emission peaks under laser with the same excitation energy at

Figure 1. PL spectra of GQDs (a), PEI1800 GQDs (b), and PEI600 GQDs (c) at different excitation wavelengths. Inset: photograph of aqueous
solution of these three GQDs under room light (left) and 365 nm UV irradiation lamp (right). UV–vis absorption spectra (d) of GQDs, PEI1800
GQDs, and PEI600 GQDs dispersed in water.
365 nm, which indicates that bare GQDs and PEI-coated GQDs can emit light of different colors even under regular UV light. Moreover, the UV–vis spectra also changed (Figure 1d). Bare GQDs and PEI600 GQDs showed excitation-dependent PL properties. For instance, the emission maximum shifts from 590 to 690 nm when the excitation wavelength changes from 500 to 650 nm for PEI600 GQDs, indicating that PEI600 GQDs have different sizes and different emissive sites, which exhibit different PL properties.40

HRTEM was used to characterize the morphology, size distribution, and dispersibility information of these GQDs. As shown in Figure 2, taking a numerous amount of samples into account, the average sizes of GQDs, PEI1800 GQDs, and PEI600 GQDs were determined to be 2.37 ± 0.10 (Figure 2a,b), 6.05 ± 0.77 (Figure 2c,d), and 57.31 ± 8.90 nm (Figure 2e,f), respectively.

Furthermore, the original GQDs have a discernible lattice structure, of which the lattice spacing of GQDs are 0.24 nm (Figure 2a), which is consistent with the d1120 lattice plane space of graphene. Interestingly, the HRTEM image of PEI1800 GQDs exhibits a core–shell structure, which has a dark black core (the size of the inner core is the same as that of the yellow original GQDs) and a gray outside layer (Figure 2c). Clearly, distinct lattice stripes, with 0.24 nm lattice spacing, corresponding to the graphite d1120 lattice plane can be seen in the dark black inner core, but this kind of lattice stripe does not exist in the light gray outside layer, thus indicating a stable core–shell structure formed by coating PEI (gray outside layer) on the surface of bare GQDs (inner dark core). As for PEI600 GQDs, relatively huge particles that include multiple GQDs could be observed (Figure 2e).

As shown in Figure 3, the features of these three kinds of GQDs, with a distinct boundary, can be clearly observed from AFM images. The topographic morphology of original GQDs confirms that most GQDs have a thickness below 1 nm (centered at 0.68 nm), which corresponds to the expected thickness of a monolayer or bilayer of GQDs (Figure 3a–c). The AFM image of PEI1800 GQDs shows a similar shape and a little larger size compared to those of bare GQDs (Figure 3d). Conversely, from the height profile and distribution, it is easy to find that the average height of PEI1800 GQDs is a little larger (Figure 3e,f), which is the result of the coating reaction with PEI1800. Nevertheless, PEI600 GQDs are much larger and the average thickness of these GQDs is much greater than that of the former two, which reaches 2.5 nm (Figure 3g–i). All results from the AFM images are in line with those of the TEM images, revealing that the size and thickness of PEI600 GQDs are much larger than those of PEI1800 GQDs and bare GQDs, whereas PEI1800 GQDs are a little bit larger and thicker than uncoated GQDs.

To understand the opposite PL peak shift of the two kinds of PEI-coated GQDs, their different sizes, structures, and

Figure 2. TEM and HRTEM (inset) images of the GQDs (a), PEI1800 GQDs (c), and PEI600 GQDs (e) assembled on the Cu grid coated with an ultrathin amorphous carbon film. In HRTEM images, both GQDs and the center core of PEI1800 GQDs show lattice spacing of about 0.24 nm. (b), (d), and (f): diameter distribution of GQDs, PEI1800 GQDs, and PEI600 GQDs, respectively. The black line is the Gaussian fitting curve.
Figure 3. AFM images of the GQDs (a), PEI_{1800} GQDs (d), and PEI_{600} GQDs (g) assembled on mica plate. The side length of each images is 5 μm. GQDs and PEI_{1800} GQDs are monodispersed and show relatively small particle sizes, whereas PEI_{600} GQDs show relatively large particle sizes. (b), (e), and (h): Height profile corresponding to AFM image of GQDs, PEI_{1800} GQDs, and PEI_{600} GQDs, respectively. (c), (f), and (i): Height distribution of GQDs, PEI_{1800} GQDs, and PEI_{600} GQDs, respectively.

Figure 4. Up: (a) DLS results and (b) FTIR spectra of the GQDs (yellow), PEI_{1800} GQDs (blue), and PEI_{600} GQDs (red). (the color of the lines in the graph are in accord with the emitting light of GQDs). Down: Evidence of the enlargement of the conjugation area after the amidation reaction during the coating process. Charge density graphs of (c) G2 (the only carboxyl group linked with the nanographene core) and (d) G1-N (the nanographene core linked with the PEI branch chain). Right: (e) Scheme of the formation mechanism of blue-emitting PEI_{1800} GQDs (up) and red-emitting PEI_{600} GQDs (down).
dispersibility were investigated. In the structure of PEI$_{1800}$ GQDs, PEI chains are simply attached onto the GQD by a powerful attraction between the positive charge of PEI and negative charge of GQDs. However, in the case of PEI$_{600}$ GQDs, several GQDs are embedded in the PEI to form a particle that resembles a capsule. The blue shift of PEI$_{1800}$ GQDs can be explained by the conjugation between the amine group of PEI and π-π domains on the graphene sheet, which lead to an electron transfer and subsequent changes of PL properties. In contrast, the red shift of the PL of PEI$_{600}$ GQDs indicates that the conjugated system is enlarged by the connection of a few GQDs, in which the cross-linking of PEI$_{600}$ plays an important role. In other words, the red-shifted PL is derived from the cross-linking enhanced emission effect. Specifically, with PEI-coated multiple graphene cores, the vibration and rotation of the cross-linking PEI-GQD system is reduced and the effective emission region is extended; thus, an enhanced red-shifted PL can be observed.

In corroboration to these findings, DLS was utilized to study the size distribution of PEI-coated GQDs. As shown in Figure 4a, the average particle diameters of GQDs, PEI$_{1800}$ GQDs, and PEI$_{600}$ GQDs are 3.9, 9.5, and 112.1 nm, respectively. Thus, the distribution trend perfectly agrees with the TEM characterization.

Furthermore, FTIR spectroscopy and XRD were adopted to prove that the GQDs had been completely coated by PEI. FTIR spectra of PEI$_{1800}$ GQDs and PEI$_{600}$ GQDs show a striking similarity, even though the spectra of GQDs are quite different (Figure 4b). For original GQDs, the characteristic absorption peak at around 3450 cm$^{-1}$ is assigned to the stretching vibration of $-\text{OH}$. The peaks at 2919 and 2839 cm$^{-1}$ are ascribed to stretching vibrations of $-\text{CH}$. The typical peaks at 1725 and 1400 cm$^{-1}$ are associated with the stretching vibration of C=O and bending vibrations of $-\text{OH}$ (in $-\text{COOH}$), respectively. The peak at 1629 cm$^{-1}$ can be assigned to aromatic stretching vibration of graphite domains, and the peak at 1260 cm$^{-1}$ is related to the stretching vibration of C=O–O–C–. For the two PEI-coated GQDs, the absorption peaks at around 3386 cm$^{-1}$ are assigned to the stretching vibrations of $-\text{NH}_2$ and $-\text{OH}$. The peaks at 2955 and 2846 cm$^{-1}$ are ascribed to the stretching vibrations of $-\text{CH}$. The typical peaks at 1570 and 1650 cm$^{-1}$ are associated with bending vibrations of $-\text{CONH}-$. The peak at 1479 cm$^{-1}$ is related to the stretching of C=O–N, and the peak at 1315 cm$^{-1}$ is assigned to the bending vibration of N–H. The results above indicate that compared with the original GQDs, PEI-coated GQDs own new functional groups, such as $-\text{NH}_2$, $-\text{CONH}-$, and C–N functional groups, along with an absence of the $-\text{COOH}$ functional group. Therefore, it can be inferred from the changes that the amine groups in PEI have reacted with the carboxyl groups on the surface of GQDs to form amide bonds. Further, in terms of the vanishing of carboxyl groups in PEI-coated GQDs, it can be deduced that PEI chains have completely coated GQDs by the amidation reaction. Identical conclusions were obtained in analyzing XPS and high-resolution XPS spectra (HRXPS) results (Figure S4) and elemental contents from XPS (Table S1) of bare GQDs and PEI-coated GQDs. On one hand, from survey XPS spectra, it is observed that nitrogen peaks appear in spectra of PEI-coated GQDs; however, there is no obvious nitrogen peak in those of bare GQDs. After further investigation of their C 1s and N 1s HRXPS spectra, it shows that only bare GQDs have the $-\text{COOH}$ peak at 288.5 eV and only PEI-coated GQDs have $-\text{CN}$ and $-\text{C}=\text{O}$ peaks for amide functional groups ($-\text{CONH}$) at 285.8 and 287.6 eV, respectively. In addition, only PEI-coated GQDs possess $-\text{NH}_2$ peaks and $-\text{CONH}$ peaks in N 1s HRXPS spectra. On the other hand, as shown in Table S1, elemental contents of GQDs and PEI-coated GQDs from XPS revealed that the (N 1s)/(C 1s) atomic ratio increased and the (O 1s)/(C 1s) atomic ratio decreased after GQDs being coated with PEI, which illustrated the amidation reaction process which added nitrogen atoms and lost oxygen atoms at the same time. Thus, this further proved that carboxyl functional groups were changed to amide functional groups during the coating reaction. Figure S5 presents XRD patterns of GQDs, PEI$_{1800}$ GQDs, and PEI$_{600}$ GQD powders. Like the FTIR spectra above, XRD patterns of PEI$_{1800}$ GQDs and PEI$_{600}$ GQDs are very similar. The weak, broad (002) peak in XRD patterns located at around 23.1° indicates the thinness and stacking structure of graphene layers. However, the peak moved to 20°, which means the lattice parameter increased, when PEI was coated on the surface of bare GQDs to form PEI$_{1800}$ GQDs and PEI$_{600}$ GQD particles. This peak movement indicated that a stable thicker core–shell structure with disordered atoms from the PEI chain was formed after the coating reactions.

To explore the detailed mechanism of the combination of GQDs and PEI, zeta potentials of GQDs, PEI$_{1800}$ GQDs, and PEI$_{600}$ GQDs were determined at pH 7 in aqueous solution (Figure S6). The surface of GQDs is mainly negatively charged with a zeta potential of -57.27 mV. It is well known that the higher the absolute value of the zeta potential is, the better the dispersion will be. However, when the GQDs are coated with PEI, zeta potentials of stable PEI$_{1800}$ GQDs and PEI$_{600}$ GQDs are -0.27 and -3.27 mV, respectively. Their resulting stability is beneficial to applications in complex environments. In summary, the formation of PEI-coated GQDs was caused by the amidation reaction. However, this may also partly result from electrostatic interactions between GQDs and PEI because the latter polymer is a well-known electron acceptor, whereas GQDs are electron donors.

Figure 4e shows a representation of the formation process of two PEI-coated GQDs. PEI of different molecular weights interact with GQDs in different ways. When PEI$_{1800}$ of a larger size connects with a GQD to form a particle, it cannot connect with another particle. Thus, PEI of high molecular weight forms single core structures, which resembles jellybeans. PEI$_{600}$ is much shorter than PEI$_{1800}$. Correspondingly, the reaction activity is much stronger than that of PEI$_{1800}$ so multiple-core structures can be formed by using PEI$_{600}$, because many PEI$_{600}$ beads can connect to form a big PEI cage, which can contain several GQDs. These structures are similar to a capsule because the PEI cage is like a big soft shell and GQDs are like particles inside the capsule shell.

Our data provides an explanation on how the structures of the three kinds of GQDs cause changes in PL properties of PEI-GQDs during the process of the coating reaction. In previous studies, conventional coating reactions by polymers could affect the PL intensity of GQDs, which was quite useful in a variety of fields, but the strategies did not substantially change the emission maxima of GQDs. However, in our work, we can realize both a large blue shift and a large red shift of the emission maxima of GQDs by using only one kind of polymer. As a result, blue-, yellow-, and red-emitting GQDs can be obtained, which illustrates a method for developing tunable PL GQDs. For PEI$_{1800}$ GQDs, the single layer PEI-coated
core—shell structure contributes to the blue shift of the PL peaks. On the contrary, the most critical factor of the red shift of PEI$_{1000}$ GQDs is the interaction of multiple GQD particles in a larger PEI cage.

The PL mechanism of GQDs is complicated and various factors can affect PL properties of GQDs. In addition to the quantum confinement effect, which is the key factor in conventional semiconductor quantum dots, other factors, like size, elemental composition, surface functional groups, edge states, and defects in the carbon bone structure can affect PL properties.42–44 Previously, researchers put forth that the PL mechanism can be explained by examining the surface/edge state and conjugated π-domains. Because the emission maximum of PEI$_{1000}$ GQDs exhibits a distinct blue shift, it can be deduced that the graphene core maintains its own character even though the surface state changes a lot. The most significant change is that the carboxyl groups on the surface of GQDs have reacted with amine groups of PEI to form amide bonds, which lead to the linkage of GQDs and PEI$_{1000}$ GQDs. It was found that both the molecule-like defect state and intrinsic state existed in GQDs. Always, the molecule-like defect state stems from carboxyl groups, whereas the core structure makes for the intrinsic state. During the coating treatment, –COOH reacted with the amine group to form –CONHR, which transferred GQDs from defect state emission into intrinsic state emission. Therefore, the peak at 520 nm corresponding to the defect state disappeared and at the same time the peak at 435 nm, which was attributed to the intrinsic state, appeared after the coating process. The conjugation mode between the carboxyl group and the inner graphene core is π−π and p−π mode, with all atoms on the same plane except for the H atom on the tail end of the carboxyl group (Figure S7). Thus, the functional groups play a leading role, because the defect state caused by the carboxyl group determines the band gap, whereas in the structure of –CONHR, all in –CONHC– and the inner graphene core are on the same plane and the electron cloud of lone pair electrons in N is overlapped with that of –C=O, forming a strong p−π conjugation. Therefore, the interaction between the amide bond and the graphene core is quite weak. As a result, the amidation reaction transferred GQDs from defect state emission to intrinsic state emission. As a result, the PL peak was blue-shifted from 510 to 435 nm and the emission color was changed from yellow to blue (Figure 1b).

In red-emitting PEI-coated GQDs, the interaction between GQD particles in the big capsule plays a vital role in red-shifted emission. As reported, PL properties of GQDs can be tuned by the size of conjugated π-domains. Typically, as the particles get bigger, luminescence energies move toward lower energy. In PEI$_{1000}$ GQDs, some GQDs were constrained in a small cage formed by PEI, so the GQDs are close to each other, arranged parallelly or stacked. Thus, when the distance between the GQDs is close enough, electrons can move freely between different GQDs. Thus, the conjugated π-domains are enlarged, and the energy band gap of PEI$_{1000}$ GQDs is narrowed compared to that of monodispersed uncoated GQDs. This causes a red shift in the PL emission.53

Because it is quite difficult to study a single nanoparticle by traditional methods, theoretical calculations were used to understand the PL mechanism.18 As shown in Figure S8, the conjugation mode between the two functional groups and inner graphene core was calculated. By theoretical calculation with DFT B3LYP/6-31G*, molecular orbitals of amide-GQD G1 (C$_{50}$H$_{47}$NO) (Figure S8a), carboxyl-GQD G2 (C$_{46}$H$_{38}$O$_2$) (Figure S8b), and G1-N (C$_{63}$H$_{65}$N$_2$O) (Figure S8c) were obtained.56,57 G1 and G2 are different in the linking groups and G1-N simulates a real PEI branch chain. The highest occupied molecular orbital and lowest unoccupied molecular orbital play important roles in the chemical and PL properties of a compound.58 Compared with carboxyl-GQDs, amide-GQDs can induce a bigger energy gap. Although there are always many functional groups linked to the graphene core, in the theoretical calculation, only one functional group was taken into account for convenience. Therefore, the influence caused by amidation of carboxyl groups may be much more significant in the real system. As a result, the changes of the energy gap of PEI-GQDs would be influenced cumulatively. When the band gap is enlarged, the PL emission peak will be blue-shifted, because the width of the band gap is positively correlated with that of the energy gap.59,60

Other models of nanographene cores with acetamide, butyrylamide, and a part of the PEI chain were calculated to study the effect of alkyd chain length and simulate the real PEI-coated GQD system (Figure S8d). Energy gaps of G1, G1-N, G1-2C (C$_{51}$H$_{63}$NO), G1-3C (C$_{52}$H$_{65}$NO), G1-4C (C$_{53}$H$_{67}$NO), and G1-5C (C$_{54}$H$_{69}$NO) do not change with the increasing length of the carbon chain (Figure S8d and Table S2). Additionally, the branch chains in PEI do not affect the orbitals. These calculations suggest good reliability of theoretical simulation with the key linking group (−CONH−) instead of the whole PEI molecule.

Moreover, the electron density is also a key factor of PL properties. The carboxyl group shares the charge completely with the inner graphene core (Figure 4c). In the charge density of G1-N that is formed by an amidation reaction between GQDs and PEI, electrons are concentrated on the center of the inner core when the PEI end chain is linked to the core (Figure 4d). The conjugation structure is closely related to electron distribution, so the conjugation domain was narrowed when PEI was coated on the graphene core. As it is well known, when the conjugation domain is reduced, the band gap will always be enlarged. Therefore, when PEI$_{1800}$ GQDs were generated, it would emit light with more energy. Thereby, the PL maximum of light emitting materials would be blue-shifted and thus the charge density distribution agreed with the theoretical calculations. It also gave a strong support to demonstrate the state changing process mentioned above; namely, after coating with PEI$_{1800}$ the influence of the “defect state” caused by functional groups was sharply reduced and the “intrinsic state” from the inner graphene core, which always gave a blue light emission, played a vital role in the PL generation process. Moreover, for GQDs which are around 15 aromatic rings, especially for the regular inner core in blue-emitting GQDs, the band gaps of size/edge-related intrinsic states are similar.61 However, the yellow-emitting bare GQDs have various emission sites aroused by different kinds of defect states from functional groups on different positions of GQDs. Hence, the blue-emitting PEI$_{1800}$ GQDs show an excitation-independent emission property, which is different with bare GQDs and red-emitting PEI$_{1000}$ GQDs.

To further understand how coatings affect the PL mechanism, the fluorescent lifetimes of GQDs were measured by time-resolved fluorescence spectroscopy (Figure S9a). Fluorescence lifetimes of bare GQDs, blue-emitting PEI$_{1000}$ GQDs, and red-emitting PEI$_{1000}$ GQDs are 2.19, 5.53, and 3.32 ns, respectively. Thus, fluorescent lifetimes are changed after coating with PEI and different PEI coatings result in different
lifetimes. These results imply that changes in PL properties of the coated GQDs are caused by the reaction between PEI and GQDs, rather than the inner-filter effect of fluorescence. Therefore, taking all of these data above into account, it can be inferred that the coating reaction mechanism was a synergy of the amidation reaction and electrostatic interaction of GQDs with PEI.

In addition, stability of these three GQDs under various conditions has been investigated. When applied as probes or sensors, fluorescent nanomaterials always need to be repeatedly excited, so high stability under repeated excitation with lasers is quite necessary. PL intensities of these three GQDs remain constant for the first 100 excitations at their excitation maxima (Figure S9b). Furthermore, there is no change in PL intensity for these GQDs at different concentrations of KCl (Figure S9c), which indicates that PL properties will not be affected by varying ionic strength. This robustness makes these GQDs useful for practical applications that involve the presence of high salt concentrations. As illustrated in Figure S9d, these GQDs exhibit excellent PL stability under irradiation with a UV lamp (24 W) at 365 nm, showing an antiphotobleaching property, which is necessary for long time exposure in real applications, such as labeling and tracing.

Biocompatibility of nanomaterials is quite important for biomedical applications. The stability of these GQDs in physiological conditions was tested. After incubation in a DMEM culture supplemented with 10% FBS, saline, or only FBS for 72 h, these three GQDs did not form any floccules or sediment, which demonstrated that GQDs were stable in the physiological condition. The cell viability of human embryonic kidney cell line 293 (HEK-293) and human primary glioblastoma cell line 87 (U-87) cells was examined when exposed to 0–200 μg mL⁻¹ of PEI₁₈₀₀ GQDs, GQDs, and PEI₆₀₀ GQDs for 24 h (Figure S10). There was no substantial reduction of cell viability for both cell lines when exposed to high concentrations (up to 200 μg mL⁻¹) of GQDs. In general, these three GQDs are of quite low cytotoxicity, indicating that the as-prepared GQDs with favorable biocompatibility have good potential to be used in bioimaging, biosensing, and so forth.

Moreover, GQDs were developed as bioimaging agents. In detail, U-87 cells were incubated with uncoated GQDs, PEI₁₈₀₀ GQDs, and PEI₆₀₀ GQDs for 18 h, respectively, and subsequently were observed by confocal laser scanning microscopy (Figure S5a,d,g). U-87 cells exhibit bright yellow, bright blue, and bright red PL when excited with 405 nm light after incubation with uncoated GQDs, PEI₁₈₀₀ GQDs, and PEI₆₀₀ GQDs, respectively. From bright field images of U-87 cells (Figure S5b,e,h), the morphology of cells further verifies that these three GQDs possess quite low cytotoxicity. Merged images (Figure S5c,f,i) further prove the capability of the as-prepared GQDs to penetrate into cells without any further treatment. These results demonstrate that the GQDs in this work are very promising for bioimaging of different kinds of living cells.

4. CONCLUSIONS

In summary, PL-tunable GQDs with blue, yellow, and red emission colors were synthesized by coating with PEI of different molecular weights. TEM, AFM, XRD, FTIR, XPS, DLS, and zeta potential were employed to characterize the

Figure 5. Confocal fluorescence images of U-87 cells incubated with 50 μg mL⁻¹ GQDs (a–c), PEI₁₈₀₀ GQDs (d–f), and PEI₆₀₀ GQDs (g–i) for 18 h. (a), (d), and (g) are the fluorescence images of U-87 cells labeled with these three GQDs, with excitation at 405 nm. (b), (e), and (h) are the bright-field images of U-87 cells. (c), (f), and (i) are the merged images of U-87 cells incubated with three GQDs.
structures of the as-prepared GQDs. The PL mechanism was studied by theoretical calculations. The average sizes of uncoated yellow-emitting GQDs, blue-emitting PEI800 GQDs, and red-emitting PEI1800 GQDs were 2.37, 6.05, and 57.31 nm, respectively. The yellow-emitting and blue-emitting GQDs were monolayer structures, whereas the red-emitting GQDs were multilayer structures. The red-emitting GQDs possessed a big PEI cage with multiple GQDs inside, whereas the blue-emitting PEI-coated GQDs had a single GQD core. Carboxyl groups were changed to amide groups on the surface of GQDs, so the influence of those functional groups was studied using theoretical calculation with DFT B3LYP/6-31G*. The amimation reaction was crucial for PL change. By analyzing the molecular orbital and charge density, it was found that amide bonds decreased the conjugation and increased the energy gap thus inducing the blue shift of the PL. For the red-amide bonds decreased the conjugation and increased the energy gap in the molecular orbital and charge density, it was found that amide bonds decreased the conjugation and increased the energy gap thus inducing the blue shift of the PL. For the red-amide bonds decreased the conjugation and increased the energy gap thus inducing the blue shift of the PL. For the red-amide bonds decreased the conjugation and increased the energy gap thus inducing the blue shift of the PL.

REFERENCES

学霸图书馆（www.xuebalib.com）是一个“整合众多图书馆数据库资源，提供一站式文献检索和下载服务”的24小时在线不限IP图书馆。

图书馆致力于便利、促进学习与科研，提供最强文献下载服务。

图书馆导航：
图书馆首页 文献云下载 图书馆入口 外文数据库大全 疑难文献辅助工具