Open-Circuit Fault Diagnosis and Fault-Tolerant Control for a Grid-Connected NPC Inverter

Ui-Min Choi†, June-Seok Lee*, Frede Blaabjerg†, and Kyo-Beum Lee*

†Center of Reliable Power Electronics (CORPE)
Department of Energy Technology
Aalborg University, Aalborg, Denmark

*Department of Electrical and Computer Engineering
Ajou University, Suwon, Korea

Corresponding Author:
Ui-Min Choi
Address) Pontoppidanstraede 101, 9220 Aalborg, Denmark
Phone) +45 2927 1705
E-mail) uch@et.aau.dk

Abstract- This paper presents an open-circuit fault detection method for a grid-connected Neutral-Point Clamped (NPC) inverter system. Further, a fault-tolerant control method under an open-circuit fault in clamping diodes is proposed. Under the grid-connected condition, it is impossible to identify the location of a faulty switch by the conventional methods which usually use the distortion of outputs because the distortion of the outputs is the same in some fault cases. The proposed fault detection method identifies the location of the faulty switch and the faulty clamping diode of the NPC inverter without any additional hardware or complex calculations. In the case of the clamping diode faults, the NPC inverter can transfer full rated power with sinusoidal currents by the proposed fault-tolerant control. The feasibility of the proposed fault detection and fault-tolerant control methods for the grid-connected NPC inverter are verified by simulation and experimental results.

Keywords –NPC inverter, grid-connected inverter, fault detection, fault-tolerant control, open-circuit fault, reliability
I. INTRODUCTION

The power electronic converters which convert electrical power efficiently from one stage to another stage play an important role in various applications to achieve high efficiency and also achieve high performance of the systems [1]. As the power electronics has progressively gained an important status in power generation, distribution and consumption, recent research endeavor to improve the reliability of power electronic systems to comply with more stringent constraints on cost, safety and availability in various applications [2]-[3].

The power electronic systems consist of various components and among them, the power devices are one of the most fragile components and thus play a key role in the robustness and reliability of the overall power electronics systems. The semiconductor device failure accounts for totals 21% of converter system’s failures [4]. According to the survey based on over 200 products from 80 companies, semiconductor power devices have been selected by 34% of responders as the most fragile components [5]. Insulated Gate Bipolar Transistor (IGBT) power module are the most widely used of their kind and the temperature and temperature swing has the most significant impact on the wear-out failures of the power IGBT modules [6]-[9].

The open-circuit fault occurs mainly due to the lifting and crack of the bond wires in the module [9]. The bond wires which is normally aluminum (Al) and power device which is silicon (Si) materials have the different Coefficient of Thermal Expansion (CTE). Generally, CTE of Al is 23.5 * 10^{-6}/K and CTE of Si is 2.6 * 10^{-6}/K [8]. The thermal cycling causes repeated cooling and heating, thus allowing the joint materials to expand and shrink at different rates and it applies the stress at the point of contact. This CTE mismatch with the temperature swing causes the failures of bond wires in the power module. Further, the bond-wire lift-off and rupture may be able to occur due to one single over-stress event such as short-circuit current. A gate driver fault is also one of the common causes of the open-circuit fault [3].

A Neutral-Point Clamped (NPC) inverter shown in Fig. 1 is widely used because of their advantages over conventional two-level converter. For example, their output AC voltage provides lower dv/dt values and reduced Total Harmonic Distortion (THD). Therefore, the output filter size can be reduced. In addition, power devices are operated at low voltage stress and thus smaller capacity switches can be used. Finally, it can improve the efficiency compared with the conventional two-level converter in certain switching frequency ranges [10]-[12].

The open-circuit fault does not cause a serious damage, compared to short-circuit fault, but reduces the system performance considerably. It leads to current distortion of the output phase currents, increase of the currents in the other normal phases and unbalance of the neutral-point voltage. Further, it may cause secondary problems in other components or loads like transformer and motors by applying the distorted currents. If the open-circuit fault occurs, fault-tolerant control needs to be applied to maintain the converter system performance. The fault detection is performed before the
fault-tolerant control, because the fault-tolerant strategies are typically different according to the specific faulty switch. Further, identifying the faulty switch can give the advantage to know where the converter needs to be repaired.

A lot of fault diagnosis methods for the two-level converter have been proposed. Most of previous methods can detect the open-circuit fault by analyzing the distortion of the output currents [13]-[16]. According to the faulty switch, the distortion of the output currents is different and the difference can be detected by slope method, current vector method using Park’s transformation, normalized average current method and etc.

In [17], the current vector method is applied to the NPC inverter for the AC motor driver. This approach is only able to identify the faulty switch pair which is two upper switches or two lower switches in the leg. To identify the faulty switch between a pair of switches, the average values of the normalized currents during each positive and negative half fundamental period are used with current vector method in [18]. Under AC motor drive condition, the distortion of the currents is different according to the faulty switch. However, under the grid-connected condition, the distortion of the currents under the open-circuit fault in one of the two upper switches is the same with the distortion of output currents between two upper open-circuit faults are the same each other. In the case of faults in two lower switches, the distortions of the currents are also the same each other. Therefore, it is impossible to identify the faulty switches between a pair of switches.

In [19], the slope method is applied for back-to-back NPC converter for wind turbine system. For the generator side converter, the faulty switch can be indentified using slope method because the current distortion is different according to faulty switch. However, in the case of the grid side inverter, the faulty switch cannot be detected clearly because the same current distortion occurs between two upper switch faults or two lower switch faults.

The methods using additional circuits or components also proposed in [20]-[21]. In [20], the pole voltage is measured by the additional hardware circuit. The open-circuit fault is detected when the abnormal pole voltage is measured. This method can detect the fault in a short time. However, it is only possible to identify the faulty leg and it is not cost-effective.

In [21], the current through the clamping diodes are measured by additional current sensors. By comparing the switching state and the polarities of the output and clamping diodes currents, the faulty switch can be detected. However, this approach also only considers not the grid-connected condition but the R-L loads condition. Under the grid-connected condition, it is impossible to identify the faulty switch by this approach.

Besides above mentioned methods, there are many methods to detect the faulty switch in the NPC converter based on the distortions of the outputs like current, voltage, and etc [22]-[23]. Most of methods are considering the rectifier operations because, under this condition, the NPC converter has the different distortion characteristics in all cases. However, unfortunately, these methods cannot
identify the faulty switch under grid-connected NPC inverter operation due to the same distortion characteristics in some cases.

In this paper, a new open-circuit fault detection method for the grid-connected NPC inverter system is proposed. Further, the fault-tolerant control method for the open-circuit fault in clamping diodes is also suggested. Two different types of open-circuit faults are first defined. The analysis of the inverter operation under each fault condition is presented. Then, the proposed fault detection method is explained. Finally, the fault-tolerant control method under the clamping diode faults is presented. The presented method can identify the faulty switches and the faulty clamping diodes without any additional hardware and complex calculations. Further, the proposed fault-tolerant control allows the NPC inverter to operate with acceptable output performance under the open-circuit fault in clamping diodes. The simulation and experimental results confirm the feasibility and reliability of the proposed methods.

II. OPERATION OF THE GRID-CONNECTED NPC INVERTER UNDER OPEN-CIRCUIT FAULT CONDITION

In this section, the operation of the grid-connected NPC inverter under the open-circuit faults is analyzed considering the open-circuit faults in phase-A. Two different kinds of open-circuit faults within the NPC inverter are considered; one is when the open-circuit fault occurs in one of the switches (Type-A fault) and the other one is when the open-circuit fault occurs in one of the clamping diodes (Type-B fault). The current from inverter to grid is considered being the positive direction.

A. Type-A fault

1. Open-circuit fault in S_{a1}

Fig. 2 (a) shows a current path under the normal condition. The current path is formed through S_{a1} and S_{a2} when the switching state is [P] with the positive current. If the open-circuit fault occurs in S_{a1}, the switching state [P] is impossible but the switching state [O] is possible functionally. If the open-
circuit fault occurs while the positive current flows, the current flows through D_{Ca1} and S_{a2} while the positive current decreases to zero and then, if the current is reached to zero, D_{Ca1} is reverse biased due to the positive grid voltage. Consequently, there are no current paths and the positive current of the faulty phase does not flow as shown in Fig. 3 (a). The upper capacitor voltage V_{DC1} becomes larger than the lower capacitor voltage V_{DC2}, because of the distortion in the positive current.

2. **Open-circuit fault in S_{a2}**

Under the normal condition, the current path is formed through D_{Ca1} and S_{a2} when the switching state is $[O]$ with the positive current as shown in Fig. 2 (b). However, if the open-circuit fault occurs in S_{a2}, the switching states $[P]$ and $[O]$ are impossible. The possible current path is only through D_{a3} and D_{a4}. If the open-circuit fault occurs in S_{a2} while the positive current flows, the current flows through D_{a3} and D_{a4} until it decreases to zero and then, D_{a3} and D_{a4} are reverse-biased due to the positive grid voltage. It means that there are no current paths and the positive current of the faulty phase does not flow as shown in Fig. 3 (b). In this case, the distorted outputs are the same with the outputs under the S_{a1} fault condition.

3. **Open-circuit fault in S_{a3}**

The overall analysis is almost the same with the previous case except for the current direction. Under the normal condition, the current path is formed through S_{a3} and D_{Ca2} while the switching state $[O]$ with the negative current. In the case of the switching state $[N]$, the current path is formed through the switches S_{a3} and S_{a4} as shown in Fig. 2 (d). If the open-circuit fault occurs in S_{a3} while the negative current flow, the current path is formed through the D_{a1} and D_{a2} until the current decreases to zero as shown in Fig. 2 (c). If it decreases to zero, D_{a1} and D_{a2} are reverse-biased due to the negative grid voltage. Therefore, the negative current does not flow because both switching state $[O]$ and $[N]$ are impossible and V_{DC2} becomes larger than V_{DC1} as shown in Fig. 3 (c).

![Fig. 2. Current paths under the normal condition](image-url)
4. Open-circuit fault in S_{a4}

Under the S_{a4} open-circuit fault condition, the switching state [N] is impossible but the switching state [O] is possible. If the open-circuit fault occurs in S_{a4} when the negative current flows, the current flow through D_{a1} and D_{a2} until it decreases to zero. After the current is reached to zero, however, the current path is not made in this case also because the diode D_{Ca2} is reverse-biased and the diodes D_{a1} and D_{a2} are also reverse-biased due to the negative grid voltage. Therefore, the negative phase current of the faulty phase does not flow and V_{DC2} becomes larger than V_{DC1} as shown in Fig. 3 (d). The distortion of the outputs under the S_{a4} fault is the same as the outputs under the S_{a3} fault condition.
B. Type-B fault

1. Open-circuit fault in D_{Ca1}

If the open-circuit fault occurs in the clamping diode D_{Ca1}, the switching state [P] is possible but the switching state [O] is impossible. Under the normal condition, the current path is formed through D_{Ca1} and S_{a2} when the switching state is [O] with the positive current. However, under the D_{Ca1} fault condition, the output is connected to the negative DC-link through D_{a3} and D_{a4} instead of D_{Ca1} and S_{a2} as shown in Fig. 2 (b) even though the negative voltages are applied across D_{a1} and D_{a4} by the negative grid voltage. This is because there is a positive current which is generated by the switching state [P]. Therefore, the output pole voltage becomes $-V_{DC}/2$ and this wrong output voltage causes the distortion of the positive phase current as shown in Fig. 4 (a). In this case, the current distortion is smaller than under Type-A fault because the output voltage is distorted only when the switching state is [O]. Therefore, the neutral-point voltage unbalance is also smaller than that of the Type-A fault case.

2. Open-circuit fault in D_{Ca2}

In the case of D_{Ca2} fault, the current path is formed through D_{a1} and D_{a2} instead of the S_{a3} and D_{Ca2} when the switching state is [O] with negative current as shown in Fig. 2 (c). Therefore, the output pole voltage becomes $V_{DC}/2$ instead of 0. This undesirable current path and pole voltage make the negative phase current to be distorted as shown in Fig. 4 (b).

Several methods to detect the open-circuit fault have been proposed such as the current pattern method, slope method and DC current method [13], [14]. However, it is impossible to identify the faulty switch by the existing methods because the output distortions between the $S_{x1}(x=a,b,c)$ fault and the S_{x2} fault or between the S_{x3} fault and the S_{x4} fault are the same as illustrated in Fig. 3.

III. OPEN-CIRCUIT FAULT DETECTION METHOD

A. Identification of faulty leg and group

The proposed fault detection method is explained considering the open-circuit faults in phase-A. The faulty phase and group can be identified based on the characteristic of the distorted currents. The average value of the positive current of each phase is defined by $I_{x, ave(+)}$ and the average value of the
negative current is defined by $I_x_{ave(-)}$. The average value during one fundamental period of the phase current is defined by $I_x_{ave(all)}$ as shown in Fig. 5.

Each phase can be divided into two groups. For example phase-A, a group 1 consists of the two upper switches (S_{a1} and S_{a2}) and the diode D_{Ca1}. A group 2 is composed of the two lower switches (S_{a3} and S_{a4}) and the diode D_{Ca2}. Under the normal condition, the average of the phase current is zero. It means that the summation of $I_x_{ave(+)}$ and $I_x_{ave(-)}$ which is $I_x_{ave(all)}$ is also zero. However, if the open-circuit fault occurs among the upper components (S_{a1} or S_{a2} or D_{Ca1}), $I_x_{ave(all)}$ has a negative value because the positive current of the phase-A is distorted. The average values of the other phases have the positive values and the total amount of increasing average values is the same with the $I_x_{ave(all)}$ if it is a three-phase balanced system. Thus, $I_{a,ave(all)} = - (I_{b,ave(all)} + I_{c,ave(all)})$. On the contrary, if the open-circuit fault occurs in the lower component (S_{a3} or S_{a4} or D_{Ca2}) of the phase-A, $I_{a,ave(all)}$ has a positive value and the other phases have negative values. Therefore, the faulty phase and group can be identified using the polarities of $I_{a,ave(all)}$ and the summation of $I_{b,ave(all)}$ and $I_{c,ave(all)}$. However, this direct average current method tends to be highly unreliable and it is difficult to set the threshold value to a constant because it depends on the variations of the output currents. Therefore, the normalized phase currents are also used for fault diagnosis. The phase currents can be normalized as given in by (1) and (2) [24].

$$|I_x| = \sqrt{(I_{ds})^2 + (I_{qs})^2}$$ (1)

$$I_x_{normal} = \frac{I_x_{(x=a,b,c)}}{|I_x|} \times I_{rated}$$ (2)

where I_{ds} and I_{qs} are d- and q-axis currents in a stationary reference frame, respectively and I_{rated} is the rated current of the inverter.

B. Classification of the fault type

The fault type can be classified after the faulty phase and group are detected. The large difference between the Type-A fault, which is the open-circuit fault in the switches and the Type-B fault, which is the open-circuit fault in the clamping diodes is whether the current flows or not during the half cycle of the faulty phase current as illustrated in Figs. 3 and 4. For example, if the open-circuit fault occurs in D_{Ca1}, the positive phase current of the faulty phase is distorted, but it flows as shown in Fig. 4 (a). Thus, $I_{a,ave(+)}$ has a positive value and $I_{a,ave(all)}$ has a negative value. However, in the case of the Type-A fault (S_{a1} or S_{a2} fault), the positive phase current does not flow as shown in Fig. 3 (a). $I_{a,ave(all)}$ has also a negative value but $I_{a,ave(+)}$ has a zero value. Therefore, the Type-A and Type-B faults can be classified using the different distortion characteristic of the output current. The identification of the group and fault type in the faulty phase-A is described in Table 1. The threshold value I_{thr1} is used to protect against a false alarm in the fault detection when the polarity of the average current value is determined.
C. Diagnosis of the faulty switch under the Type-A fault

The remarkable difference between the open-circuit faults in the upper switches (S_{x1}(x=a,b,c) and S_{x2}) or between the open-circuit faults in the lower switches (S_{x3} and S_{x4}) is the possibility of the switching state [O]. For instant phase-A, under the S_{a1} open-circuit fault, the switching state [P] is only impossible when the current is positive. In the case of S_{a2} open-circuit fault, both switching states [P] and [O] are impossible. However, it is impossible to determine the possibility of the switching state [O] under the faulty condition due to the same distortion characteristic of the phase currents as shown in Fig. 3. To determine the possibility of the switching state [O], an underexcited reactive power may be injected.

Usually, the grid-connected inverter transfer electric power to the grid with a unity Power Factor (PF). Therefore, the polarities of the output phase current and the output voltage are almost the same as shown in Fig. 6 (a). If an underexcited reactive power is injected, the phase current leads the output pole voltage and the grid voltage and thus the regions which have the different polarities between the phase current and the output voltage occurs as shown in Fig. 6 (b). In this section, a region 1 means that the phase current is positive and the output pole voltage is negative and a region 2 means that the phase current is negative and the output voltage is positive. By making the regions 1 and 2 through the underexcited reactive power injection, the possibility of the switching state [O] can be determined and the faulty switch also can be identified. Depending on the faulty switch, the current in the region 1 or 2 flows or not.

![Fig. 6. Phase currents I_A (7.5A/div) and pole voltage V_{ac} (200V/div) (a) before (b) after underexcited reactive current is injected.](image)

![Fig. 7. Sectors of the space vector diagram for faulty switch detection.](image)

The voltage space vector diagram of the NPC inverter can be divided into sectors as shown in Fig. 7 to decide the region where the underexcited reactive power is injected for identification of the faulty switch.

To identify the faulty switch between S_{a1} and S_{a2}, the underexcited power is injected when S = 5
and SS = 5 so that the region 1 is made. In the region 1, the reference voltage is negative and thus it is made by the switching states [O] and [N]. All current paths by these switching states [O] and [N] are possible regardless of the open-circuit fault in S_{a1}. Therefore, the positive phase current flows in the region 1 as shown in Fig. 8 (a). However, in the case of the open-circuit fault in S_{a2}, the positive phase current does not flow in the region 1 as shown in Fig. 8 (b) because the switching state [O] is impossible. From this characteristic, the possibility of the switching state [O] is checked and the faulty switch between the upper switches (S_{a1} and S_{a2}) can be identified.

In the case of the Type-A fault in the group 2, the underexcited reactive power is injected, when $S = 2$ and SS = 2 in order to make the region 2. In this region, the positive reference voltage is made by the switching states [P] and [O] and all current paths by the switching states [P] and [O] are possible because the grid voltage is negative. Therefore, the negative phase current flows in the region 2 as shown in Fig. 8 (d) regardless of the open-circuit fault in S_{a3}. On the contrary, if the open-circuit fault occurs in S_{a3}, the current path when the switching state [O] is impossible. Therefore, the negative current does not flow in the region 2 as shown in Fig. 8 (c). From this characteristic, the faulty switch between S_{a3} and S_{a4} can be determined.

The magnitude of the injected underexcited reactive current can be determined according to the magnitude of the output currents and the threshold value (I_{thr2}) of the current for the faulty switch identification.

![Fig. 8. Current of faulty phase with the proposed fault detection method for the faulty switch identification under the Type-A fault (a) S_{a1} (b) S_{a2} (c) S_{a3} (d) S_{a4} open-circuit fault.](image)

<table>
<thead>
<tr>
<th>Faulty switch</th>
<th>Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{a1} or S_{a2}</td>
<td>$S = 5$, SS = 5</td>
</tr>
<tr>
<td>S_{a3} or S_{a4}</td>
<td>$S = 2$, SS = 2</td>
</tr>
<tr>
<td>S_{b1} or S_{b2}</td>
<td>$S = 1$, SS = 1</td>
</tr>
<tr>
<td>S_{b3} or S_{b4}</td>
<td>$S = 4$, SS = 4</td>
</tr>
<tr>
<td>S_{c1} or S_{c2}</td>
<td>$S = 3$, SS = 3</td>
</tr>
<tr>
<td>S_{c3} or S_{c4}</td>
<td>$S = 6$, SS = 6</td>
</tr>
</tbody>
</table>

To make the positive current flow above the threshold value in the region 1 ($S=5$ and SS=5) or the negative current flow above the threshold value in the region 2 ($S=2$ and SS=2) sufficiently, the power factor should be changed properly by injecting the underexcited reactive current. Further, underexcited reactive current to be injected should be larger than I_{thr2}. In this paper, the power factor is...
changed to 0.9 (leading) to make the regions 1 and 2 in sectors that are described in Table II and to make the current flow.

Table II shows the sectors where the underexcited reactive current is injected for the faulty switch identification. The minimum reactive current is set to $2* I_{thr2}$ by considering a margin. The underexcited reactive current is injected under the open-circuit fault condition, which is an abnormal condition. It means that, the produced current by the reference of the reactive current may not be guaranteed because the unbalanced capacitor voltages make a much smaller output pole voltage than that of under the normal condition. Therefore, the larger reference of the underexcited reactive current than the threshold value (I_{thr2}) should be set. The demanded underexcited reactive current can be defined as

$$I_{de_ref(-)} = -I_qe \cdot \cos^{-1}(0.9) \quad \text{(if } I_{de_ref(-)} < -2 \cdot I_{thr2})$$

$$I_{de_ref(-)} = -2 \cdot I_{thr2} \quad \text{(if } I_{de_ref(-)} \geq -2 \cdot I_{thr2})$$

(3)

Fig. 9 shows the flow chart of the proposed fault detection method considering the faults in the phase-A.

```
START
Calculation of average values of phase currents ($I_{ave}$) according to Eq. (1)-(2)

Y

-I_{thr} < I_{ave} < I_{thr}

N

Y

I_{ave} < -I_{thr1} \& \&
I_{ave} > I_{thr1}

N

Y

I_{ave} > I_{thr1} \& \&
I_{ave} < -I_{thr1}

N

Ya fault

Injection of $I_{de\_ref(-)}$ according to Eq. (3) and TABLE. II

Y

I_{x} > I_{thr2}

N

S_{a1} fault

D_{C_{a1}} fault

Fault tolerant control

Y

I_{x} < I_{thr2}

N

S_{a2} fault

N

S_{a3} fault

N

S_{a3} fault

D_{C_{a2}} fault

Fault tolerant control

Fig. 9. Flow chart of the proposed fault detection method considering the faults in the phase-A.
```
IV. FAULT-TOLERANT CONTROL UNDER THE OPEN-CIRCUIT FAULT IN THE CLAMPING DIODES

A. Operation of a fault tolerant control method

If the open-circuit fault happens in \(D_{Ca1} \), it is impossible to generate the switching states of the small voltage vectors \([OON], [ONN], [ONO]\) and the switching states of the medium voltage vectors \([OPN], [ONP]\) when \(I_a \) is positive. The impossible switching states should be replaced with other switching states to generate the outputs without distortion. The impossible N-type switching states \([OON], [ONN] and [ONO]\) can simply be replaced with P-type switching states \([PPO], [POO] and [POP]\) by subtracting the shortest turn-on time (\(T_{short} \)) from the turn-on times of three phases (\(T_a, T_b, T_c \)). The turn-on time is a time that the switching state of each phase is changed from the current state to another state and \(T_{short} \) is the shortest turn-on time among \(T_a, T_b, T_c \). If the reference voltage is in the region 1 of sector I (see Fig. 10), the switching sequence is developed as \([ONN]-[PNN]-[PON]-[POO]-[PON]-[PPN]-[ONN]\) as shown in Fig. 11 (a).

![Space vector diagram of the NPC inverter for the fault-tolerant control.](image)

Fig. 10. Space vector diagram of the NPC inverter for the fault-tolerant control.

Fig. 11 (b) shows the switching sequence after \(T_{short} \) is subtracted from the three-phase turn on times. The switching sequence is formed as \([PNN]-[PON]-[POO]-[PON]-[PPN]-[ONN]\). The switching state \([ONN]\) is replaced with \([POO]\) and the dwell time of \([POO]\) becomes double.

The turn-on times for the fault-tolerant control is simply redefined as

\[
T'_a = T_a - T_{short} \\
T'_b = T_b - T_{short} \\
T'_c = T_c - T_{short}
\]

(4)

where \(T_{short} = T_a \).
If there is only one N-type switching state in the switching sequence, the impossible N-type switching state can be replaced by subtracting T_{short}. However, if there are two impossible N-type switching states in the switching sequence, it is impossible to get the switching sequence for the fault-tolerant control by only subtracting T_{short}. If the reference voltage is in the region 3-a of sector I, the switching sequence is formed as [ONN]-[OON]-[PON]-[POO]-[PON]-[OON]-[ONN] as shown in Fig. 12 (a). Fig. 12 (b) shows the switching sequence after T_{short} is subtracted to replace the N-type switching state [ONN] with [POO]. There is still the impossible N-type switching state [OON] and it also should be substituted to the P-type switching state [PPO] as shown in Fig. 12 (c). In this switching sequence, the phase-C changes its switching state twice. To reduce the number of switching, the switching sequence should be rearranged as [OON]-[PON]-[POO]-[PON]-[OON] as shown in Fig. 12 (d). In order to rearrange the switching sequence, the dwell time of each switching state should be obtained. The dwell time (T_d) can be expressed by the turn-on times as

$$
T_{d[\text{ONN}]} = 2(T_a - T_b)
$$

$$
T_{d[\text{PON}]} = 2(T_c - T_a)
$$

$$
T_{d[\text{POO}]} = 2(T_{sw/2} - T_c + T_b) = 4T_b
$$
From the dwell time of each switching state, the redefined turn-on times \((T'_a, T'_b, T'_c)\) for the switching sequence rearrangement are obtained as

\[
T'_a = 0 \\
T'_b = \frac{1}{2}(T_d(PON) + T_d(POO)) = 2T_b + T_c - T_a \\
T'_c = \frac{1}{2}T_d(PON) = T_c - T_a
\]

All impossible N-type switching states in the sector I and IV should be substituted to P-type switching states for the fault-tolerant control. However, it means that the dwell times between N-type switching states and P-type switching states are not equal during the fundamental period. It makes the average of a neutral current non-zero. Consequently, it causes the unbalance of two DC-link capacitor voltages. The P-type switching states increase the lower capacitor voltages and decrease the upper capacitor voltage. On the contrary, the N-type switching states decrease the lower capacitor voltage and increase the upper capacitor voltage. Therefore, the total dwell times of the P-type and N-type switching states during the fundamental period should be equal so that the average of the neutral current is zero resulting in balance of the two capacitor voltages. To make the average of the neutral current zero, the P-type switching states in sectors III and IV should be replaced with N-type switching states in their switching sequences. It can be achieved by adding \(T_{\text{short}}\) to the turn-on times. In the regions that have two P-type switching states, all P-type switching states should be replaced to N-type switching states and the switching sequence should also be rearranged as explained above.

The impossible switching states of the small voltage vectors can be replaced with the other type of the switching states. However, in the case of medium voltage vectors, there are no possibilities to replace the switching state with another one which indicate the same voltage vector. Therefore, a new switching sequence should be applied in the regions that have the impossible medium voltage vectors. In the case of the open-circuit fault in \(D_{Ca1}\), the medium switching states \([OPN]\) in the sectors II and \([ONP]\) in the sector V are impossible. The new switching sequence without these switching states can be achieved by applying the two-level switching method. If the reference voltage of the phase-A is made by the switching states \([P]\) and \([N]\), the switching sequence can be obtained without impossible medium switching state \([OPN]\) and \([ONP]\) in the sector II and V, respectively. The two-level switching method can be implemented by adding an offset time \(T_{\text{offset}}\) to the turn-on time of the faulty phase as below [25]

\[
T_{\text{offset}} = -\frac{1}{2}T_x \quad \text{if } (V_s > 0) \\
T_{\text{offset}} = -\frac{1}{2}T_x + \frac{1}{4}T_{sw} \quad \text{if } (V_s < 0)
\]
where T_x is the turn-on time, V_x is the reference voltage of the faulty phase and T_{sw} is the switching period. For example phase-A, the turn-on time is redefined as

$$
T'_a = \begin{cases}
\frac{1}{2} T_a & \text{if } (V_a > 0) \\
\frac{1}{2} (T_a + \frac{1}{2} T_{sw}) & \text{if } (V_a < 0)
\end{cases}
$$

(8)

S_{a1} and S_{a2} are turned on by the redefined turn-on time T'_a at the same time and S_{a3} and S_{a4} are operated complementarily with S_{a1} and S_{a2}. The proposed fault-tolerant control for the clamping diodes is arranged as shown in Table III.

TABLE III

FAULT-TOLERANT CONTROL FOR THE OPEN-CIRCUIT FAULT IN THE CLAMPING DIODES

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>Phase-A</th>
<th>Phase-B</th>
<th>Phase-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Changing N-type to P-type switching state</td>
<td>Two-level switching method</td>
<td>Changing P-type to N-type switching state</td>
</tr>
<tr>
<td>II</td>
<td>Two-level switching method</td>
<td>Changing N-type to P-type switching state</td>
<td>Changing P-type to N-type switching state</td>
</tr>
<tr>
<td>III</td>
<td>Changing P-type to N-type switching state</td>
<td>Changing N-type to P-type switching state</td>
<td>Two-level switching method</td>
</tr>
<tr>
<td>IV</td>
<td>Changing P-type to N-type switching state</td>
<td>Two-level switching method</td>
<td>Changing N-type to P-type switching state</td>
</tr>
<tr>
<td>V</td>
<td>Two-level switching method</td>
<td>Changing P-type to N-type switching state</td>
<td>Changing N-type to P-type switching state</td>
</tr>
<tr>
<td>VI</td>
<td>Changing N-type to P-type switching state</td>
<td>Changing P-type to N-type switching state</td>
<td>Two-level switching method</td>
</tr>
</tbody>
</table>

TABLE IV

PARAMETERS OF A 10 kW NPC INVERTER FOR A CASE STUDY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Power</td>
<td>10 kW</td>
</tr>
<tr>
<td>DC-link voltage (V_{DC})</td>
<td>600 V</td>
</tr>
<tr>
<td>Rated current (I_{rated})</td>
<td>15.2 Ams</td>
</tr>
<tr>
<td>Switching frequency (f_{sw})</td>
<td>10 kHz</td>
</tr>
<tr>
<td>Grid voltage (V_g)</td>
<td>220 Vms</td>
</tr>
<tr>
<td>Output frequency (f_{out})</td>
<td>50 Hz</td>
</tr>
</tbody>
</table>

B. Effect of a fault tolerant control on junction temperature

The junction temperature (T_j) of power devices is an important factor to be considered when the inverter is designed because it is closely related to the failure of the power devices. It means that T_j should be in a safety range when the fault-tolerant control is applied. To investigate the effect of the proposed fault-tolerant control on junction temperatures of power devices, thermal simulations are carried out. A 10 kW NPC inverter with F3L30R06W1E3_B11 module which is manufactured by Infineon is considered for a case study. The parameters of a 10 kW NPC inverter are summarized in Table IV.
The phase-A is considered for comparison of junction temperatures between normal condition and fault-tolerant control condition.

Fig. 13 shows the thermal equivalent block diagram of a part of an NPC IGBT module. Thermal characteristic of power devices from junction to case $Z_{th(j-c)}$ or junction to heat-sink $Z_{th(j-h)}$ can be represented by a Foster model as shown in Fig. 14 and can be expressed by

$$Z_{th(i-h)}(t) = \sum_{i=1}^{n} R_i (1 - e^{-t/\tau_i})$$ \hspace{1cm} (9)

where $\tau_i = R_i * C_i$.

Table V shows the thermal parameters of the IGBT module for Foster model which can be obtained from datasheet.

Table V: Parameters for thermal model of IGBT module

<table>
<thead>
<tr>
<th>Thermal Impedance</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{th(j-IGBT)}$ (K/W)</td>
<td>0.142</td>
<td>0.309</td>
<td>0.719</td>
<td>0.58</td>
</tr>
<tr>
<td>τ_{IGBT} (s)</td>
<td>0.0005</td>
<td>0.005</td>
<td>0.05</td>
<td>0.2</td>
</tr>
<tr>
<td>$R_{th(j-Diode)}$ (K/W)</td>
<td>0.29</td>
<td>0.495</td>
<td>0.894</td>
<td>0.622</td>
</tr>
<tr>
<td>τ_{Diode} (s)</td>
<td>0.0005</td>
<td>0.005</td>
<td>0.05</td>
<td>0.2</td>
</tr>
<tr>
<td>$R_{th(j-Climbing_Diode)}$ (K/W)</td>
<td>0.215</td>
<td>0.396</td>
<td>0.752</td>
<td>0.537</td>
</tr>
<tr>
<td>$\tau_{Climbing_Diode}$ (s)</td>
<td>0.0005</td>
<td>0.005</td>
<td>0.05</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Considering the reliability of power device modules, the rating of the power device module is chosen so that the junction temperature under the rated power of the inverter is 70–80 % of the maximum junction temperature [26]. The capacity of a heat-sink is also chosen considering safety ranges of the case and junction temperatures. In this simulation, the heat-sink temperature is set by 80 °C and considered as a constant under assumption that the heat-sink is designed properly considering the junction temperature and the case temperature. The losses in the power devices are calculated based on datasheet values.

Fig. 15 (a) shows the junction temperatures of the power devices when the NPC inverter is operated...
with rated power under the normal condition. The hottest parts are the outer switches S_{a1} and S_{a4} in this case study and the maximum junction temperature is about 104 °C. Fig. 15 (b) shows the junction temperatures of the power devices when the proposed fault-tolerant control is applied. The hottest parts are both inner and outer switches because these switches are operated at the same time. The maximum junction temperature is about 102 °C. From the simulation results, it can be seen that all power devices are under the safety temperature regions when the proposed fault-tolerant control is applied. Consequently, the proposed fault-tolerant control can be applied without any modifications such as heat-sink and water cooling ability from its initial system condition.

V. Experimental Results

Experiments have been carried out to verify the validity and effectiveness of the proposed fault detection and fault-tolerant control methods. A 10 kW small-scaled prototype has been built and used for the experiments. The design specifications and parameters used for the experiments are listed as given below; DC-link voltage (V_{DC}): 600 V, DC-link capacitors (C_{DC}): 2200 µF, grid voltage (E_a): 300 Vpeak, output frequency (f_{out}): 60 Hz, switching frequency (f_{sw}): 10 kHz, threshold value of average current (I_{thr1}): 1.5 A, threshold value of current for faulty switch identification (I_{thr2}): 2 A.

Fig. 16 shows the outputs of the grid-connected NPC inverter under the normal condition. The phases of the output pole voltage, the output current and the grid voltage are almost same when it is operated with unity power factor.

Fig. 17 shows the experimental waveforms when the open-circuit fault has occurred in each switch of phase-A (Type-A fault), respectively. If the open-circuit fault occurs, the positive or negative current of the faulty phase does not flow. Further, the distortion of the output currents between S_{a1} and S_{a2} open-circuit faults or between S_{a3} and S_{a4} open-circuit faults are the same as analyzed in §II.
Fig. 18 shows the output phase currents when the Type-B open-circuit fault has occurred in phase-A. The output currents are distorted but both positive and negative currents of the faulty phase flow on the contrary to the Type-A open-circuit fault.

Fig. 19 shows the experimental result of the fault type classification when the Type-A and Type-B open-circuit fault have occurred in S_{a1} and D_{Ca1}, respectively. $I_{a,ave(\text{fall})}$ and $I_{a,ave(\text{f})}$ have negative values in both case and these are smaller than the negative threshold value due to the distortion on the

Fig. 18 shows the output phase currents when the Type-B open-circuit fault has occurred in phase-A. The output currents are distorted but both positive and negative currents of the faulty phase flow on the contrary to the Type-A open-circuit fault.

Fig. 19 shows the experimental result of the fault type classification when the Type-A and Type-B open-circuit fault have occurred in S_{a1} and D_{Ca1}, respectively. $I_{a,ave(\text{fall})}$ and $I_{a,ave(\text{f})}$ have negative values in both case and these are smaller than the negative threshold value due to the distortion on the
positive phase current. However, $I_{a_ave_(+)}$ and $I_{b_ave_all} + I_{c_ave_all}$ have positive values and these are larger than the positive threshold value when the Type-B open-circuit fault has occurred.

In the case of the Type-A open-circuit fault, $I_{a_ave_(+)}$ is in the range of the threshold value, which is $\pm 1.5A$. As it can be seen in Fig. 19, the Type-A and Type-B faults can be identified precisely using the characteristics of the distorted output currents. After the fault type is determined, the faulty switch can be detected by the proposed method under the Type-A fault.

Fig. 20 (a) and (b) shows the experimental results of the proposed fault detection method when the Type-A open-circuit fault has occurred in S_{a1} and S_{a2}, respectively. The Type-A fault detection signal indicates the occurrence of the open-circuit fault and whether the open-circuit-fault occurs in upper switches or in lower switches. The fault detection signal “1” means that the open-circuit fault occurs between upper two switches and “2” means that the open-circuit fault occurs between lower two switches. The fault switch identification signal denotes the location of faulty switch in the faulty phase.

![Fig. 19. Identification of fault type when (a) Type-A open-circuit fault has occurred in S_{a1} (b) Type-B open-circuit fault has occurred in D_{ca1}.

![Fig. 20. Diagnosis of the faulty switch under the Type-A open-circuit fault in (a) S_{a1} (b) S_{a2} (c) S_{a3} (d) S_{a4} by underexcited reactive current injection.](image)
After the fault type and group are detected by the detection signal as 1, the underexcited reactive current has been injected when $S = 5$ and $SS = 5$ to identify the faulty switch between Sa_1 and Sa_2.

In the case of the Sa_1 fault, the positive phase current flows in the region where the underexcited current is injected as shown in Fig. 20 (a). However, if the open-circuit fault occurs in Sa_2, the positive current does not flow as shown in Fig. 20 (b). From this result, the faulty switch between upper two switches can be identified correctly.

Fig. 20 (c) and (d) shows the experimental results of the proposed fault detection method when the Type-A open-circuit fault has occurred in Sa_3 and Sa_4, respectively. To separate the fault location between the two lower switches (Sa_3 and Sa_4), the underexcited reactive current has been injected when $S = 2$ and $SS = 2$. The negative current does not flow under the open-circuit fault in Sa_3, but the negative current flows in the case of the open-circuit fault in Sa_4. The location of the faulty switch is identified precisely by the proposed method.

Fig. 21 shows the results of the proposed fault-tolerant control method under the open-circuit fault in D_{Ca_1} (Type-B fault). Total Harmonic Distortion (THD) of the output currents increase compared with the currents under the normal condition since the two-level switching method is applied in some regions. Under the normal condition, the THDs of line-to-line voltages are 33.9%. If the proposed fault-tolerant control is applied, the line-to-line voltages (V_{ab} and V_{ac}) which contain the faulty leg increase by 44.3%. The other line-to-line voltage (V_{bc}) keeps the same THD with normal condition.

The most of world leading companies have designed their inverters with a margin of the THD of current to be less than 2-3% at the nominal power [27]-[28]. Therefore, even though the THD of the line-to-line voltages are increased, the inverter can be complied with standards for the grid-connection. Further, manufacturers can consider the fault-tolerant control mode when the output filter is designed to improve the reliability and availability under the open-circuit fault conditions.

Fig. 22 shows the experimental results of the overall procedure from fault detection to fault-tolerant control when the open-circuit fault occurs in the clamping diode D_{Ca_1}.
Due to the distortion of the positive current in phase-A, the DC-link voltage increases about 25 V when the open-circuit fault occurs in \(D_{Ca1} \). The fault-tolerant control is applied after the fault is detected. The distortion of the output currents is eliminated and the DC-link voltage becomes stable. The experimental results demonstrate that the grid-connected NPC inverter is operated with well-maintained performance by the proposed fault-tolerant control method when the open-circuit fault occurs in the clamping diodes.

VI. Conclusion

Open-circuit fault-detection and fault-tolerant control methods for the NPC inverter under the grid-connection have been proposed.

In the beginning of this paper, the operation of the grid-connected NPC inverter under the open-circuit fault conditions has been studied. Then, the open-circuit fault detection and fault-tolerant control methods for the grid-connected NPC inverter system have been presented. Under the grid-connected condition, it is impossible to identify the fault switch by existing methods, which have been developed based on the outputs distortions for the conventional two-level inverter system. The fault between switches and clamping diodes can be identified by checking whether the current flows or not during the half period of the output current of the faulty phase. The faulty switch between the upper two switches or between the lower two switches is classified by injecting an underexcited reactive current during a short period. In the case of the open-circuit fault in the clamping diode, the fault-tolerant control method can be applied. Even though the THD of the output currents increase, the NPC inverter can be operated with acceptable output performance and without de-rating of the output power.

The feasibility and effectiveness of the proposed open-circuit fault detection and fault-tolerant control methods have been verified by simulation and experimental results.

REFERENCE

[27] ABB, Datasheet of string inverters: PVI-10.0-TL-OUTD and PVI-12.5-TL-OUTD.
[28] SMA, Datasheet of SUNNY CENTRAL 1000CP XT.