On the Mechanism of the Thermal N-Nitropyrazole Rearrangement. Evidence for a [1,5] Sigmatropic Nitro Migration

Joseph W. A. M. Janssen, Clarisse L. Habraken, and Robert Louw*

Gorlaeus Laboratories, University of Leiden, Leiden, The Netherlands

Received October 27, 1975

The title reaction, which smoothly proceeds at ca. 150 °C, displays first-order kinetics and is affected neither by acids or bases, nor scavengers for free radicals or for NO₂⁻. Our kinetic studies further showed that replacement of 3(5)H by D has no effect on the rate of this intramolecular process. Solvent effects are surprisingly small. Substituents in the 3, 4, or 5 position exert only modest influence on rates and activation parameters; ΔH* values are in the range 30-36 kcal mol⁻¹, ΔS* being 2 ± 0 eu. The reaction, which can also be performed in the vapor phase, apparently does not proceed heterolytically; the type of solvent effect points to a transition state which is somewhat less polar than the starting compound. Isomerizations in benzene lead to trace amounts only of the corresponding 3(5)-pyrazoles; analogous migrations were found in N-nitroindazoles, triazoles, and imidazoles.

Thermal rearrangement of N-nitropyrazoles unsubstituted at the 5 position (1) has been proven to be a convenient method for the preparation of 3(5)-nitropyrazoles (2)²⁻³ (Scheme I). The isomerizations can be performed at moderate temperatures (120-190 °C) in various solvents. Normally, the 3(5)-nitropyrazoles are formed quantitatively; in some instances side reactions, particularly denitration, are observed.

Thermal N → C migration of NO₂ is not restricted to pyrazoles; analogous migrations were found in N-nitroindazoles, triazoles, and imidazoles.

For the mechanism of the rearrangement of N-nitro(pyrazoles), a two-step process has been proposed,²⁻⁵ involving an unprecedented [1,5] sigmatropic shift of the nitro group and fast rearomatization of the intermediately formed 3H-pyrazole (3) (Scheme II). For thermal N → C migrations of alkynyl groups in pyrroles and, recently, imidazoles, similar mechanisms have been suggested.²⁻⁶ Our proposition was based on the apparent intramolecularity of the N-nitropyrazole rearrangement. The isomerization obeys first-order kinetics perfectly and no divergent reaction paths were observed when the thermolyses were performed in the presence of reagents (e.g., phenol, quinoline, and toluene) which may act as catalyst or scavenger of intermediates (see ref 2). Moreover, a sigmatropic process adequately accounts for NO₂ migration to the 5(3) position. Migration to the 4 position has only been ob-

Scheme II

4. 0.05 M; higher concentration of the alkali tends to lower the yield, probably by stabilizing the intermediate disazo derivative.
Mechanism of the Thermal N-Nitropyrazole Rearrangement

Scheme III

\[
\begin{array}{c}
\text{H}_2\text{C} = \text{N} \quad \text{O}_\text{N} \quad \text{H}_2\text{C} \\
\text{NO}_3 \quad \text{NO}_3
\end{array}
\]

\[\text{4} \quad \text{[1,5]} \quad \text{[1,5]} \quad \text{5}\]

served\(^2,3\) with a 5-substituted 1-nitropyrazole: 5-methyl-1-nitropyrazole (4) gives 3(5)-methyl-4-nitropyrazole (5) as major product. In this case, formation of a 4-nitropyrazole can be explained by assuming two sequential [1,5] nitro shifts (Scheme III). Formation of a small amount of the 5(3)-nitro isomer 2b on thermolysis of 4 is the result of a noteworthy side reaction: slow isomerization into the less strained N-nitro compound 1b, followed by rearrangement to 2b.\(^3\)

In itself, the differing behavior of 3- and 5-methyl substituted 1-nitropyrazoles excludes a common intermediate. Hence dissociation, viz., initial homo- or heterolysis of the N—NO\(_2\) bond, is not involved, as in these cases the resulting pyrazolyl fragments (radical or anion) should give rise to the same (ratio of) products. Recently we showed that N-pyrazolyl radicals generated from 3- and 5-methyl substituted pyrazole precursors are, at least at room temperature, indistinguishable.\(^9\) Thus, photolysis of N-nitropyrazoles 1b and 4 in benzene leads to the same products, viz., isomeric N-phenylpyrazoles 6 and 7, in a 4:1 ratio; apparently these derivatives arose via homolytic aromatic substitution (Scheme IV).

Scheme IV

\[
\begin{array}{c}
1b \quad \text{hv} \\
\text{CH}_3 \quad \text{CH}_3 \\
\text{CH}_3 \quad \text{CH}_3 \quad \text{C}_6\text{H}_6 \\
\text{6} \quad \text{7}
\end{array}
\]

Although the thermally induced, intramolecular rearrangement of N-nitropyrazoles obviously proceeds with a high degree of selectivity, more data are needed to define the transition state(s) involved in the NO\(_2\) shift. Information on other, possibly sigmatropic, NO\(_2\) shifts is very scarce,\(^10\) and on the basis of the available data processes involving tight (caged) radical\(^11\) or ion pairs cannot be excluded rigorously. Another possibility is that of migration via a reactive intermediate, particularly bicyclic structure A. For the thermal rearrangements of 3H-pyrazoles into N-substituted pyrazoles (van Alphen rearrangements,\(^12\) the migrating groups being, e.g., cyano or acyl), analogous bicyclic intermediates have been proposed,\(^13\) although most authors favor a sigmatropic mechanism.\(^14\)

A way to discriminate between these possible modes of NO\(_2\) migration might be determination of activation parameters. However, then first the possibility of tautomerization 3 \(\rightarrow\) 2 (see Scheme III) being rate determining has to be eliminated. Note that intermediate 3 is a 3H-pyrazole, and these compounds can only be isolated when the 3 position is disubstituted.\(^15\) Thus tautomerization 3 \(\rightarrow\) 2, which can be either a [1,5] hydrogen shift or a solvent-assisted proton transfer, is probably faster than remigration of the nitro group. Kinetic parameters for the overall reaction then bear upon the first step(s). Alternatively, if remigration of NO\(_2\) is faster than tautomerization, introduction of D at the 5 position should give rise to a primary kinetic H/D isotope effect.

5-Deutero-3-methyl-1-nitropyrazole (8) was prepared according to Scheme V (cf. ref. 16 and 3). A competition experiment with the nondeuterated derivative 1b at 140 °C (hexachloroacetone solution, isomerization followed by NMR, see Experimental Section) did not reveal a primary isotope effect: \(k_H/k_D = 1.0 \pm 0.1\). Hence, hydrogen migration is not involved in the rate-determining step(s).

Scheme V

\[
\begin{array}{c}
\text{N} \quad \text{NaOD} \quad \text{150°C} \quad \text{H}_2\text{SO}_4-\text{H}_2\text{O} \\
\text{D} \quad \text{D} \quad \text{D} \quad \text{D} \\
\text{CH}_3 \quad \text{CH}_3 \quad \text{H} \\
\quad \text{AcONO}_2 \\
\quad \text{8}
\end{array}
\]

Results and Discussion

Kinetic Measurements. First, the solvent effect on the rearrangement of a representative N-nitropyrazole was studied. The isomerization rate of the 3-methyl derivative 1b at 140 °C was measured in six solvents of differing polarity (see Table I). Kinetic data are based on the decay of N-nitropyrazole, followed by GLC. TLC analysis after completion of the reactions revealed that in all solvents studied the expected product 2b was formed without detectable amounts of side products.\(^17\) In all solvents, first-order kinetics was observed.

In three solvents of markedly different character (n-decane, nitrobenzene, and propylene glycol), rate constants were determined at different temperatures, and from the Arrhenius plots obtained the activation parameters were calculated. The results, together with rate constants at 140 °C in the different solvents, are listed in Table I.

In order to learn about substituent effects, activation parameters were determined for the isomerization of the parent 1-nitropyrazole 1a, and for the 3-phenyl (1d) and 3-nitro derivative (1f), in nitrobenzene solution. In addition, the effect of variation in position of a (methyl) substituent was examined by measuring the activation parameters for the rearrangement of the 4- and 5-methyl derivatives 1g and 4, in o-nitrotoluene solution. Again, in all cases first-order behavior was observed.

The kinetic data for the rearrangement of 4 were corrected...
Table I. Rate Constants and Activation Parameters for the Rearrangement of 3-Methyl-1-nitropyrazole (1b) in Various Solvents

<table>
<thead>
<tr>
<th>Solvent</th>
<th>k_{150°, s$^{-1}$</th>
<th>ΔH^\ddagger, kcal mol$^{-1}$</th>
<th>ΔS^\ddagger, eu</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Decane</td>
<td>3.4</td>
<td>29.7</td>
<td>-3</td>
</tr>
<tr>
<td>Mesitylene</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anisole</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>3.5</td>
<td>33.9</td>
<td>+7</td>
</tr>
<tr>
<td>N-Methyleneimide</td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>6.4</td>
<td>30.5</td>
<td>0</td>
</tr>
</tbody>
</table>

* Temperature range 130-170°C; parameters calculated for 150°C. The same rate constant was found in 0.08 and 0.008 M solutions.

Table II. Rate Constants and Activation Parameters for the Rearrangement of Some Substituted N-Nitropyrazoles in Nitrobenzene

<table>
<thead>
<tr>
<th>Compd</th>
<th>Substitution</th>
<th>Temp. °C</th>
<th>k_{150°, s$^{-1}$</th>
<th>ΔH^\ddagger, kcal mol$^{-1}$</th>
<th>ΔS^\ddagger, eu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td></td>
<td>150-190</td>
<td>0.7</td>
<td>34.9</td>
<td>+4</td>
</tr>
<tr>
<td>1b</td>
<td>3-Methyl</td>
<td>130-170</td>
<td>9.3</td>
<td>33.9</td>
<td>+7</td>
</tr>
<tr>
<td>1d</td>
<td>3-Phenyl</td>
<td>110-140</td>
<td>72°</td>
<td>30.2</td>
<td>+2</td>
</tr>
<tr>
<td>1f</td>
<td>3-Nitro</td>
<td>180-200</td>
<td>0.3°-c</td>
<td>37.6</td>
<td>+6°2</td>
</tr>
<tr>
<td>1g</td>
<td>4-Methyl</td>
<td>150-190</td>
<td>0.7°</td>
<td>35.8</td>
<td>+6°</td>
</tr>
<tr>
<td>4</td>
<td>5-Methyl</td>
<td>190-160</td>
<td>11°</td>
<td>32.7</td>
<td>+6°</td>
</tr>
</tbody>
</table>

* Calculated for 150°C. In o-nitrotoluene rather than nitrobenzene. * Extrapolated from Arrhenius parameters. * Not corrected for concurrent denitration (see text); denitration of 1g ~10% at 150°C, ~20% at 190°C. / Corrected for concurrent N1→N2 nitro migration.

for the concurrent (slow) $N_1 \rightarrow N_2$ ($\rightarrow C_3$) nitro shift (see Experimental Section). For this side reaction approximate activation parameters could be calculated: log $A \approx 16$ and $E_A \approx 40$ kcal mol$^{-1}$. Kinetic data for the other rearrangements are based merely on decay of starting material. Hence, denitration, as observed on thermolyzing 1f and 1g, is not treated as an independent side reaction (vide infra).

Although in solvents of entirely different character k_{140° only varies within a twofold range (Table I); the solvent effect on the activation parameters is evident. As the starting materials have distinct dipole moments (~4.0 D for 1b, benzene solution), the higher ΔH^\ddagger and ΔS^\ddagger values in nitrobenzene than in n-decane can be understood if the transition state for the rate-determining step has less (di)polar character than the starting material. In nitrobenzene, solvation lowers the energy content of the initial state relative to that in n-decane, while for the transition state the differences in solvation are smaller. The relatively high activation entropy in nitrobenzene solution also is a result of decreased solvation in the transition state. The rather low activation parameters observed for the rearrangement of 1b in propylene glycol may result from hydrogen bonding interactions in the probably 3H-pyrazole-like transition state.

In the light of the above considerations, a transition state with a marked degree of charge separation is highly unlikely. This also follows from the small substituent effects found (Table II); the fact that a 3-phenyl substituent affects the activation energy more than 3-nitro is incompatible with a polar transition state.

Thus, the most obvious possibilities are those of a concerted NO$_2$ migration, or migration via an intimate radical pair. A concerted reaction involving a cyclic transition state normally has $\Delta S^\ddagger < 0$, although for, e.g., [1,5] sigmatropic shifts in cyclopentadienes, values up to +6 eu have been reported. As suggested by both dipole moments and ultraviolet spectra, the N-NO$_2$ bond in N-nitropyrazoles has a restricted rotational freedom. Hence, the entropy content of the transition state need not be less than that of the initial state. As the activation parameters in n-decane are the least affected by solvation, they are the most appropriate to consider. The value of ~3 eu found for the rearrangement of 1b in n-decane tallies, in our opinion, with a sigmatropic NO$_2$ migration.

The magnitude of the activation energy is also more compatible with a concerted rearrangement than with a radical-pair process. The value of the N-NO$_2$ bond dissociation energy is unknown, but N-nitropyrazoles may be compared with dialkylaminonitriles. For $D_{N,N,O}_2$ in N,N-dimethylaniline, values ranging from 41 to 53 kcal mol$^{-1}$ have been reported.

On the basis of the heats of formation of dimethylaniline ($\Delta H_f^0 = 0$) and the dimethylamino1 and nitrogen dioxide2 radicals ($\Delta H_f^0 = +39$ and +8, respectively), we expect $D_{N,N,O}_2$ to be 47 kcal mol$^{-1}$. Consequently, for N-nitropyrazoles, N-NO$_2$ bond strength of 45–50 kcal mol$^{-1}$ seems realistic. The ΔH^\ddagger values for the N→C NO$_2$ migrations do not exceed 37 kcal; moreover, ΔH^\ddagger for the rearrangement of 1b in n-decane is only 30 kcal mol$^{-1}$. The difference of ~15 kcal with the (estimated) bond dissociation energy is thought to be sufficient for excluding N-NO$_2$ bond homolysis as the rate-determining step.

To reveal possible "borderline" character of the mechanism, thermolyses of the methyl substituted N-nitropyrazoles 1b, 1g, and 4 were performed in benzene solution, and the reaction mixtures were analyzed for N-phenylpyrazoles, diagnostic for free pyrazolyl radicals. N-Phenylpyrazoles were found to be present at very low levels (<0.1%) only (see Experimental Section). Perhaps impurities have played a part. However, if the proportions of N-phenylpyrazoles are considered to be correct indications for competitive N-NO$_2$ bond homolysis, and accepting log $A = 16$, the corresponding rates lead to $E_A \approx 45$ kcal mol$^{-1}$, in reasonable agreement with the estimated bond strength. Hence, homolytic scission of the N-NO$_2$ bond can be considered as an unimportant parallel reaction of the (apparently molecular) N→C NO$_2$ migration.

Recapitulating, the best fitting mechanism for the thermal N-nitropyrazole rearrangement involves a rate-determining, concerted migration of NO$_2$ giving a 3-nitro-3H-pyrazole (3) as intermediate (cf. Scheme II). This endothermic step is followed by rapid tautomerization to give a 3(5)-nitropyrazole 2; hence the driving force for the overall isomerization is the greater stability of a C-nitro- as compared to a N-nitropyrazole.

In the first step of the rearrangement, the nitro group has to move out of the pyrazole plane; therefore, the nitro migration may be classified as a symmetry-allowed suprafacial [1,5] sigmatropic shift4 (cf. [1,5] migrations in cyclopentadienes). The $N_1→N_2$ nitro migration as observed during the isomerization of 4 might well be a suprafacial (i.e., over the pyrazole plane) shift too, rather than an in-plane migration. Although a planar process is the least motion mode and aromaticity of the pyrazole ring is conserved, it is unlikely as it, as yet) substituent effects (see Table II) might be indicative of solar contributions to the pericyclic transition state. So rate enhancement by a 3-methyl and retardation by a 3-nitro substituent is suggestive of a minor contribution of bicyclic.
Mechanism of the Thermal N-Nitropyrazole Rearrangement

structure A (vide supra). On the other hand, the effect of the position of a (methyl) substituent is not easily understood.

As mentioned above, isomerization of N-nitropyrazoles is sometimes accompanied by denitration. Especially this is the case when the 4 position is substituted (cf. ref 3). It is difficult to imagine how a substituent at the 4 position should affect the first step of the isomerization. During the second step (that of reisomerization), however, the nitro group has to return to the pyrazole plane. From dissociation constants and ultraviolet spectra of "ortho"-substituted C-nitropyrazoles it follows that these compounds are strained. Hence the activation barrier for tautomerization into 4-substituted 3(5)-nitropyrazoles may well be increased, and alternative reactions may take place. To test this thesis, the thermolysis of 5-methyl-1-nitro-3-phenylpyrazole (9) was studied. Neither 5-methyl-1-nitropyrazole (4) nor 1-nitro-3-phenylpyrazole (1d) give denitration, but the expected rearrangement product of 9, 3(5)-methyl-4-nitro-5(3)-phenylpyrazole (11), is highly strained, and denitration should be observed. Heating 9 in nitrobenzene at 120 °C indeed yields 11, but also for ~80% the denitrated pyrazole 10 (see Scheme VI), k10< for the disappearance of 9 is ~4.2 × 10^−4 s−1 (see Experimental Section), and the product ratio 10:11 does not depend on the degree of conversion (tallying with the observation that 11 is stable under the experimental conditions). Hence, it is likely that the denitration reaction competes with the rearromatization step(s). The way in which the nitro group is lost is, as yet, far from clear, however. Possibly some radical pathway obtains.

The denitration accompanying isomerization of 1,3-dinitropyrazole (1f) may not be due to steric factors. As addition of quinoline appeared to suppress this side reaction, a heterolytic mechanism is indicated. Here, the product, 2f, with pK_a = 3.1,26 may be acidic enough to entail protodenitration.31

In conclusion, the mechanism suggested earlier for the thermal N-nitropyrazole rearrangement seems in accord with all experimental data: the rearrangement is intramolecular; solvent and substituent effects rule out a polar (or ionic) transition state for the rate-determining NO2 migration step, while the low AH^* values make a radical-pair process highly unlikely. The most plausible mechanism, then, is that of sigmatropic NO2 migration.

Experimental Section

Materials. The syntheses of the N-nitropyrazoles used for the kinetic measurements, as well as those for the C-nitropyrazoles used as reference materials, have been described in refs 2 and 3. Other pyrazoles, such as 3(5)-methyl-3(5)-phenylpyrazole (10), were synthesized by standard procedures. The solvents used for the kinetic measurements were redistilled over either a spinning band column or a 1-m Vigreux column, n-decane after treatment with concentrated sulfuric acid. Other chemicals (including those used as internal standard), being high-grade commercial products, were used as such.

3-(deutero)-4-(deutero)-methylpyrazole. A solution of 5 g of 3(S)-methylpyrazole in 25 ml of 1 N sodium deuteroxide (prepared by dissolving sodium in deuterium oxide, 99.75%) was heated in an autoclave at 150 °C for 4 h. The reaction mixture was neutralized with deuterated (98-99%) trifluoroacetic acid, and the deuterated pyrazole was isolated by means of continuous extraction (15 h) with methylene chloride, followed by evaporation of the solvent; this alkaline exchange was repeated once. The deuterated pyrazole was then refuxed for 15 h in 1 N aqueous sulfuric acid, and worked up (after neutralization with sodium bicarbonate) by continuous extraction with methylene chloride. This acid exchange was repeated once. The resulting pyrazole was distilled in vacuo: yield 3.2 g bp 105 °C (18 mm); NMR (80 MHz, CDC13 solution) δ 5.8 (s, 1, 4-H) and 2.1 ppm (s, 3, 8-H); isotopic composition (MS analysis), 7.4% d0, 86% d1, and 6.8% d2.

5-Deutero-3-methyl-1-nitropyrazole (8). A prepared mixture of 6 ml of acetic anhydride and 2.5 ml of the acid (100%) was added carefully to a solution of 2.0 g of 3-deutero-5-(3)-methylpyrazole in 2 ml of acetic acid at 0 °C. After 2 h, the reaction mixture was poured on to ice and neutralized with potassium carbonate, and the reaction precipitate was collected and filtered. The crude product (1.4 g) was crystallized from hexane: mp 54-55 °C; NMR (100 MHz, CDC13) δ 6.2 (s, 1, 4-H) and 2.3 ppm (s, 3, 8-H); no 5-H signal could be detected. Accurate MS analysis appeared to be impeded by D/H randomization in the mass spectrometer.

Measurement of the Kinetic Isope Effect. About equal quantities of both the deuterated 8 and the nondeuterated 3-methyl-nitropyrazole (1b) were dissolved in hexachloroacetone; p-dichlorobenzene was added as internal standard. NMR spectra (100 MHz) were recorded before and after heating of the solution in an oil bath at 140 °C. The results of a typical experiment are as follows.

<table>
<thead>
<tr>
<th>Integrated signals (relative to internal standard)</th>
<th>Obsd ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-H</td>
<td>0.761</td>
</tr>
<tr>
<td>4-H</td>
<td>0.514</td>
</tr>
<tr>
<td>4'-H</td>
<td>0.951</td>
</tr>
<tr>
<td>Initial solution</td>
<td>0.17</td>
</tr>
<tr>
<td>After 30 min at 140°</td>
<td>1.18</td>
</tr>
</tbody>
</table>

Kinetic Measurements. A. Determination of the Rate Constants. General Procedure. A small, thin-wall tube, containing ~0.5 ml of a 0.1 M solution of the N-nitropyrazole and an internal standard24 in the appropriate solvent, was placed in a thermostated oil bath; a small stream of nitrogen was passed over. Aliquots were removed at regular time intervals and analyzed by GLC (using a 2 m X 0.125 in. on Gas-Chrom Q column, 240 °C) at temperatures at which rearrangement of the N-nitropyrazole was negligible, normally 20-30 °C. The isomerization was followed for about 2 half-lives.

The relative amounts of N-nitropyrazoles present in the samples (Cs) were calculated from the peak areas. First-order rate constants were calculated from plots of log Cs/Ct vs. time.

B. Correction of the Kinetic Data for the Rearrangement of 5-Methyl-1-nitropyrazole (4). To correct for the concurrent (slow) N1 → N2 (→ C1) nitro shift, the product ratios 3(5)-methyl-3(5)-nitropyrazole (2b)/3(5)-methyl-4-nitropyrazole (5), representing k(N1 → N3)/k(N1 → C1), were determined by analyzing the reaction mixtures after more than 10 half-lives by GLC, using standard mixtures of the isomeric C-nitropyrazoles. Although the C-nitropyrazoles were incompletely separated, k(N1 → C1) could be calculated with appropriate accuracy. From the (less accurate) values of k(N1 → N3), activation parameters for this isomerization were calculated (vide supra).

Thermolysis of N-Nitropyrazoles in Benzene Solution.

Solutions (ca. 5%) of the relevant N-nitropyrazoles in benzene, containing 0.01% of p-di-tert-butylbenzene as internal standard, were heated in sealed tubes. The resulting solutions were analyzed by GLC on a 55-m capillary OV-17 column. Quantitative analyses were made for N-nitropyrazoles only; 3-methyl-1-nitropyrazole (1b), 2 h at 150 °C, gave ca. 0.006% of 3-methyl-1-nitropyrazole (6) (close to the lower limit of detection; the 5-methyl isomer 7 could not be detected); 5-methyl-1-nitropyrazole (4) gave, under the same conditions, ca. 0.015% of a mixture of the isomeric N-nitropyrazoles 6 and 7; 4-methyl-1-nitropyrazole (1g), 2 h at 190 °C, gave ca. 0.03% of 4-methyl-1-nitropyrazole; in the latter reaction mixture, semiquantitative analysis revealed ~12% of 4-methylpyrazole, 0.7% of nitrobenzene, and ~0.1% of biphenyl.
5-Methyl-1-nitro-3-phenylpyrazole (9), was prepared from 10 (2 g) by nitration in acetic acid (12 ml) with acetyl nitrate (1.7 ml of HNO₃, d 1.52, and 4 ml of acetic anhydride), during 2 h at room temperature. After working up with ice-cold water, filtration, and recrystallisation from methanol, 0.9 g of 9 was obtained: mp 99–100 °C; ir (KBr) 1615 and 1285 cm⁻¹ (NNO₂); NMR (CDCl₃) δ 7.8 (m, 5, C₆H₅), 6.36 (s, 1, N-H), 7.36 (m, 5, C₆H₅), and 2.26 (s, 3, CH₃).

Thermolysis of 9, A Preparative Scale. A solution of 0.8 g of 9 in 10 ml of chlorobenzene was heated for 4 h at 110 °C under an nitrogen atmosphere. After evaporation of the solvent, the products were chromatographed over silica gel column using chloroform–ethyl acetate mixture as eluent. In addition to 0.18 g of unreacted 9, 0.35 g of (36)-methyl-4-nitro-3(5)-phenylpyrazole (11) and 0.20 g of denitrated product 10 were isolated. Compound 11 was recrystallized from benzene and had mp 140 °C; ir (KBr) 1600 and 1360 cm⁻¹ (CNO₂); NMR (CDCl₃) δ 8.27 (s, 1, N-H), 7.36 (s, 5, C₆H₅), and 2.26 (s, 3, CH₃).

B. NMR Scale. A 0.2 M solution of 9 in nitrobenzene, containing p-dimethyl-butylnitroxane as internal standard, was heated under a nitrogen atmosphere in a thermostated oil bath at 120 °C. Samples were withdrawn at six 15-min intervals. Product compositions were determined via careful integration of NMR (100 MHz) spectra.

Registry No.—1a, 7119-95-1; 1b, 31163-84-5; 1d, 38858-56-6; 1f, 38858-81-0; 1g, 38858-87-9; 1j, 58311-77-5; 1k, 58311-78-7; 1l, 3440-00-6; 1l, 58311-79-8; 3(5)-deutério-5(3)-methylpyrazole, 58311-80-1; 3(5)-methylpyrazole, 1453-58-3.

References and Notes

(1) (a) Partly abstracted from the Ph.D. Thesis of J.W.A.M.J. (Leiden, 1975), to be referred to as "1a." (b) This research was supported by the Netherlands Foundation for Chemical Research (S.O.N.) with financial aid from the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

(11) No CIDNP effects (indicative of radical-pair processes) could be observed when nitroarylpyrazoles were heated in hexachloroacetone solution: (a) A. R. Leylal in "Chem. C-D; iodine product, CHCISO₂ = 65%; N-N = 100%. Experimentally, there was no indication for a reversible reaction 2 = 1.

(15) Although strained, the investigated "ortho"-substituted Cinlpyrazoles were stable under the experimental conditions for the rearrangement reactions.

(16) In the product of thermolysis of 9g in aniline (2 h at 190 °C), 0.7% of nitroanisole (mainly m- and p-GLC analysis) was found to be present. (17) The thermolysis of 9g in benzene, yielding 0.7% of nitrobenzene (see Experimental Section). Note also that in the latter case only a trace amount of NO₂ via homolysis of starting compound 1g. This experiment was performed by M. Timmer, this laboratory.

(18) In contrast, addition of quinoline to 4-(methyl-1-nitrophenylpyrazole 1g) seems to have no effect on the denitration reaction (GLC analysis).

(19) When thermolysing 9g in benzene at 190 °C, ca. 1% of nitrobenzene is formed; the use of anisole as a solvent (170 °C) led to 2–3% of o- and p-nitroanisole (ratio ca. 1:5; GLC analysis) and indicative of electrophilic nitration. Compare J. G. Hoggett, R. B. Moodie, J. R. Penton, and K. Schofield, "Nitration and Aromatic Reactivity," Cambridge University Press, New York, N.Y., 1971, p. 95.

(20) The following were the instruments used: Varian Aerograph 1400 and Hewlett-Packard HP 5700 gas chromatographs; JEOI PS-100 and Minikr NMR apparatus; an AEI-EMS 902 mass spectrometer; and a Beckman IR-10 IR spectrophotometer.

(21) From these data it can also be concluded that (1) the rates of the rearrangement in hexachloroacetone are about 3 X 10⁻⁴ s⁻¹, similar to that in the other solvents used (cf. Table I), and (2) the rearrangement in hexachloroacetone proceeds cleanly (4-NO₂ = 4-NO₂ + 4-NO₂).

(22) The following internal standards were used: nitrobenzene (rearrangement of 1b to 4-methyl-4-nitrophenylpyrazole; n-iododecanes 1b in n-decane); methyl myristate (rearrangement of 1d); and n-pentadecane (all other cases).

(23) To follow the rearrangement of 1d, a comparable 0.5-methyl column was used.