
Implementing an Effective Test Automation Framework

Eun Ha Kim, Jong Chae Na, and Seok Moon Ryoo

Advanced Technology Lab
NHN Corporation

Seoul, Korea
{eunha.kim, monster, seokmoon.ryoo}@nhn.com

Abstract—Testing automation tools enable developers and/or

testers to easily automate the entire process of testing in

software development. evertheless, adopting automated

testing is not easy and unsuccessful due to a lack of key

information and skills. In order to help solve such problems,

we have designed a new framework to support a clear overview

of the test design and/or plan for automating tests in

distributed environments. Those that are new to testing do not

need to delve into complex automation tools or test scripts.

This framework allows a programmer or tester to graphically

specify the granularity of execution control and aids

communication between various stakeholders and software

developers. It also enables them to perform the automated

Continuous Integration environment. In this paper, we

describe details on experiences and usage of the proposed

framework.

Keywords-Test Automation Framework, Automated Testing,

Continuous Integration, Fit, Fit�esse, STAF, STAX

I. INTRODUCTION

There is a paradigm shift in the software industry. It is
being driven by business demands to create larger and more
complex software products in less time. How is the paradigm
shift changing the way software is produced? The paradigm
shift may be characterized by two words: infrastructure and
automation. So what does all of this have to do with the
developer? What about consistent use of best coding
practices by the team [1]?

In this paper, we propose our infrastructure and
automation-based approach, together with the set of best
practices. We then explain implementation details and a new
test automation framework architecture that combines
several control structures, which is easier to control the
workflow of tests and test environments, as well as other
reusable components to interface with external systems. We
call this framework NTAF, which is an abbreviation for
NHN Test Automation Framework. NTAF has gained
acceptance in NHN and is now being presented outside NHN.
This paper reports on applications of NTAF for supporting
automated testing methods in practical products and details
the benefits gained from NTAF used in various products.

II. BACKGROUND

This section introduces various frameworks and the
analysis of the optimal framework for the application under
test. This also includes the background of NTAF.

There are many frameworks that provide support for
automated software testing such as Framework for Integrated
Test (Fit), FitNesse, Software Testing Automation
Framework (STAF), Selenium, StoryTestIQ (STIQ),
Ranorex, Test Automation FX, and Concordion, ranging
from decent to horrible and from free to very expensive.

Fit is an open source tool for automated customer tests.
FitNesse [2] is a Wiki built on top of the Fit framework
which is used for automating acceptance test cases. The basic
idea of FitNesse is that tests can be written as tables, much
like a spreadsheet. FitNesse works best in a pair environment,
though, where one programmer and one business user can
work together to define the business rules and write tests for
them. FitNesse is most suitable for acceptance test tools to
communicate between various stakeholders in the agile
environment. FitNesse is excellent as a collaboration tool for
communication with customers, but weak as a basis for
testing in distributed environments. Yet it does not allow
remote execution.

STAF [3] is an open source, multi-platform, multi-
language framework designed around the idea of reusable
components called services. STAF does allow distributed
execution, meaning that tests can be executed from a STAF
control machine which are sent to and executed locally on
either the client or server machines. The results are returned
back to the control machine for reporting. It is designed to be
used as pluggable STAF Execution Engine (STAX) for
automated test case distribution, execution, monitoring, and
results analysis. However, writing a STAX job file in
xml/python and understanding the workflow of tests through
xml file are not easy.

Selenium and STIQ are software testing frameworks for
web applications. Selenium tests can be written as HTML
tables or coded in a number of popular programming
languages and can be run directly in most modern web
browsers. The STIQ tests are written using the FitNesse wiki,
with Selenium commands and can be run directly in most
modern web browsers [4].

Ranorex and Test Automation FX are Windows GUI test
automation frameworks. Ranorex does not have a scripting
language of its own and the user can use the functionalities
of the programming languages like C#, VB.NET and
IronPython. Test Automation FX supports for Visual Studio
2005 and Visual Studio 2008. It is currently only focused on
testing Windows GUI and has only limited support for web
testing [4].

2009 33rd Annual IEEE International Computer Software and Applications Conference

0730-3157/09 $25.00 © 2009 IEEE

DOI 10.1109/COMPSAC.2009.188

534

Concordion is an open source tool for writing automated
acceptance tests in Java. It is similar to the Fit Framework
but more intuitive. However, it requires an HTML source
document and runs using JUnit [4].

So we wondered if we could combine multiple testing
tools. To accomplish this, we implemented a new framework
called NTAF, built atop a well-known and widely-used tool,
FitNesse. NTAF was designed to be used as an extensible
framework through a powerful mix of various tools. The
workflow of tests and test environments are graphically
expressed as tables of input data and expected output data in
distributed environments. For example, picking up new
builds automatically, installing them on remote machines
and executing tests remotely can be accomplished by
sending commands via STAF to the applications and
reporting the results back in FitNesse.

III. CONTROLLING THE FLOW OF EXECUTION

NTAF has a simple but powerful syntax which controls
the flow of execution by using keywords that redirect the
path of execution when appropriate. Originally, Fit tables are
executed in sequence. However, NTAF is designed to make
it significantly easier to control the workflow of tests and test
environments.

Tab. I shows control structures which enable to handle
the logic and flow of the execution. They support distributed
environments so that multiple servers with clients can be
configured and tested at the same time. It is very effective in
reducing duplicate codes and modules from test applications.

TABLE I. CONTROL STRUCTURES TO HANDLE THE LOGIC AND FLOW

OF THE EXECUTION

Fixture or Keyword Action

StafFlowFixture Controls the workflow of all tests and
test environments.

StafCmdFixture Runs a STAF command.
ITERATE

Iterates a list and runs each iteration in
sequence as long as a specified Boolean
condition is met.

LOOP Runs tasks repeatedly as long as a
specified Boolean condition is met.

BREAK Jumps out of the closest enclosing loop
or iterate.

CONTINUE Jumps to the top of the closest enclosing
loop or iterate.

PARALLEL Runs tasks in parallel.
PARALLELITERATE Runs tasks for each entry in a list in

parallel.
IF/ELSEIF/ELSE Selects a task to perform if a specified

Boolean condition is met.
LOG Logs a message and displays on the

result page when an error occurs during
program execution.

TIMER Runs tasks for which time control is
provided.

Fig. 1 shows an example of the STAX job for testing web

application. The purpose is to run the HTTP service in a
multi-thread environment. Fig. 2 is the same test workflow
as Fig. 1. Fig. 2 is simpler and clearer to understand than Fig.
1. As shown in Fig. 2, tables are used by developers or
testers in writing tests and configuring the workflow of tests.

It is also available to customers, management or other
stakeholders for running tests and checking the results.
NTAF takes advantage of the powerful syntax to be able to
develop better tests. Orchestration of complex workflows
presented by tables can be easy to understand. It reduces the
effort for creating workflows of test cases and increases the
visibility of test workflow.

<stax>
<script>
 serviceUrl = 'http://www.htmlcodetutorial.com/cgi-bin/mycgi.pl?town='
 varList = ['Seoul', 'Busan', 'Dajeon']
 </script>
 <function name="Main">
 <testcase name="'httpTest'">
 <sequence>
 <paralleliterate var="cityName" in="varList">
 <sequence>
 <script>
 httpRequest = 'REQUEST METHOD GET URL %s%s' %

(serviceUrl, cityName)
 </script>
 <stafcmd>
 <location>'local'</location>
 <service>'HTTP'</service>
 <request>httpRequest</request>
 </stafcmd>
 <if expr="RC != 0">
 <sequence>
 <tcstatus result="'fail'"/>
 </sequence>
 <else>
 <sequence>
 <script>
 if TAFResult['content'].find(cityName) != -1:
 isFind = 1
 else:
 isFind = 0
 </script>
 <if expr="isFind == 1">
 <sequence>
 <tcstatus result="'true'"/>
 </sequence>
 <else>
 <sequence>
 <tcstatus result="'false'"/>
 </sequence>
 </else>
 </if>
 </sequence>
 </else>
 </if>
 </sequence>
 </paralleliterate>
 </sequence>
 </testcase>
 </function>
</stax>

Figure 1. Example of the STAX job definition

StafFlowFixture

start_paralleliterate {var: $cityName$}, {in: Seoul, Busan, Dajeon}

StafCmdFixture

service location request submit() response()

http local
request method get url
http://www.htmlcodetutorial.com/cgi-
bin/mycgi.pl?town=$cityName$

0 $cityName$

end_paralleliterate

Figure 2. NTAF syntax

IV. BUILDING A CI SYSTEM

We performed a case study to demonstrate the
applicability of our framework in the practical product

535

described in Section V, with the intention of convincing
software developers and/or testers that the benefits mitigate
the difficulties of manual testing. NTAF is available for
performing CI by incorporating the automated build tools
such Ant, Maven, Continuum, or CI servers directly. In this
paper, we incorporated the Hudson into NTAF due to its
usability, wide adoption, and robustness. It could be
alternated with other CI servers or build tools that can poll
for changes in the version control repository on a specified
time interval. The overall architecture is depicted in Fig. 3.

Figure 3. The components of a CI System

A CI scenario starts with the developer committing
source code to the repository. The steps in a CI with NTAF
scenario will typically look something like this [5]:

• First, a developer commits code to the version
control repository. Meanwhile, the CI server on the
integration build machine is polling this repository
for changes.

• Soon after a commit occurs, the CI server detects
that changes have occurred in the version control
repository, so the CI server retrieves the latest copy

of the code from the repository and then executes a
build script, which integrates the software.

• The CI server executes the NTAF, which performs
automated testing of the entire software package at
each stage of the software development cycle. If
necessary, the test is executed under the concurrency
testing tool to find concurrent defects.

• The BVT generates a BVT report in HTML format
and the metrics tool generates reports for automated
statistical analysis to measure quality, examine
practices and evaluate risks.

• When errors or exceptions arise in testing actions,
NTAF registers them on the BTS automatically and
the CI server generates feedback by e-mailing build
results to specified project members.

• The CI server continues to poll for changes in the
version control repository.

A. Automated Builds

A Build Verification Test (BVT) is a suite of tests run on
each new build of a product to verify the overall quality of a
build. BVT lets developers know right away if there is a
serious problem with the build or an unstable build. The
BVT service that we developed to interface with the BVT is
invoked from the STAF service request through the NTAF to
perform a test suite on the local machine or on another
remote machine in the distributed environment. A build is
considered a success if all the tests in the BVT have passed.
If any build that fails the build verification test is rejected,
testing continues on the previous build. The BVT generates
an HTML report as shown in Fig. 4. This report shows the
output on BVT with the build status, relevant code coverage
and verification passing.

Figure 4. BVT report

B. Automated Bug Tracking

STAF services are reusable components that provide all
the capability in STAF [3]. Therefore, we developed our own
service to interface with Bug Tracking System (BTS). After
building a test suite, a results page with an unexpected value
marked in red is displayed as shown in Fig. 5. When errors
or exceptions arise in testing actions, the BTS service
registers them on the BTS automatically so that BTS can
help developers and testers keep track of reported software
bugs in their work.

536

Figure 5. Automated bug report to the BTS

C. Automated Testing

By using NTAF, we can obtain a clear overview of the
test design and configure dynamic test scenarios without
writing scripts in xml/python or additional coding work. Test
cases can easily be defined with a table. This project shows
how to use NTAF to write a various types of tests and
organize them into hierarchical test suites. It enables faster
feedback and leads to quicker defect resolution early in the
software development cycle. NTAF defines extensibility
points, which are interfaces that allow integration of other
plug-ins or legacy systems. Fig. 6 shows the test result trend
in Hudson dashboard. Fig. 7 depicts the details of the test
result.

Figure 6. NTAF test result trend

Figure 7. An example of NTAF test cases

D. Automated Metrics Measurement

NHN Standard Indicator for Quality (N’SIQ) is a
standard metric developed by NHN for measuring quality,
examining practices and evaluating risks. It embraces many
activities, all of which involve some degree of software
measurement such as feature completion rate, unit test code
coverage, cyclomatic code complexity, violation rate to
coding standards, test case run rate, test pass rate, test code
coverage, bug close rate, active bugs by priority, security
vulnerability, and bug density. Therefore, we incorporated
N’SIQ into NTAF for automated statistical analysis and
reporting. Fig. 8 shows the cyclomatic code complexity trend
of N’SIQ result in Hudson dashboard.

Figure 8. N’SIQ collector result trend

E. Automated Concurrent Detection

We started by finding a way to deal with concurrency
issues in parallel and distributed software through the
incorporation of a concurrent detection tool into NTAF. We
used the example in ConTest with the specific bug in mind
and expected to get every combination of five digit numbers
composed of zeros and ones to be printed (with at least one 1
present) when run under ConTest. ConTest is an advanced
testing solution from IBM, whose main use is to expose and
eliminate concurrency-related bugs in parallel and distributed
software [6].

In this simple example, five threads are created. Each
processes a local variable initialized to 1,10,100,1000 and
10000 respectively. The global variable is initialized to 0,
and then all the threads are started. When a thread is run, it
adds the local variable to the global variable and terminates.
The main thread waits for a long time and then prints the
global variable [6]. We have run it 10 times by using NTAF
keywords, such as PARALLEL and LOOP. When this
program is executed it always prints the expected result of
11111 as output as shown in Fig. 9.

However, there is a bug hiding. In Fig. 10, the first step
in using ConTest is to instrument the program. NTAF then
uses the instrumented instead of the original application.
After running the program 10 times, the program prints
every combination of five digit numbers composed of zeros
and ones to be printed (with at least one 1 present) when run
under ConTest. The result shows the concurrency bug of the
application which was not discovered in Fig. 9.

To support an effective method for finding concurrent
defects in NTAF, we have started to work on integrating

537

with tools for C/C++ such as Intel Thread Checker and
Microsoft Chess for windows and Helgrind for Linux.

Figure 9. The result of compilation and execution of processes with

NTAF

Figure 10. The result of instrumentation and execution of processes under

ConTest with NTAF

V. APPLICATIONS

We have been using NTAF for testing the practical
products, such as database management tool, web application,
network library, open API, enterprise service bus system,
HTTP service, and XSS (Cross Site Scripting) filtering

service at the NHN Corporation. Our case studies indicate
that the use of NTAF can aid teams in developing a higher
quality product.

We experienced that the use of NTAF can aid
communication among various stakeholders, facilitate stress
testing which is difficult or impractical to perform manually
and support for a better understanding of the progress and
code quality throughout the project lifecycle.

VI. CONCLUSION

In this paper, we describe how NTAF can be used to
make tests easily. NTAF offers improved visibility and
reporting, allowing quick communication among
stakeholders and developers. It facilitates performance and
stress testing, which is difficult or impractical to perform
manually. Moreover, NTAF provides powerful compatibility
and extensibility.

Although NTAF requires understanding on how to use
control structures of NTAF, how to use wiki markup to make
tests, and how to best express requirements in FitNesse, it is
easy to learn and use.

Finally, we want to emphasize that NTAF is an open
source framework. We recommend you to download NTAF
and try it out. You can contact us if you would like to
participate in the research process.

ACKNOWLEDGMENT

We thank to Jeongmin Kim for his insights and
encouragement; and Hyejin Kim for providing language
support when drafting this paper. We would also like to
thank to the various development and QA teams in NHN for
providing us with practical data.

REFERENCES

[1] Dorota Huizinga, and Adam Kolawa, Automated Defect Prevention :
Best Practices in Software Management, Wiley-Interscience, 2007.

[2] Rick Mugridge, and Ward Cunningham, Fit for Developing
Software : Framework for Integrated Tests, Prentice Hall, 2005.

[3] “Software Testing Automation Framework (STAF)”,
http://staf.sourceforge.net.

[4] Wikipedia, http://en.wikipedia.org/wiki/Acceptance_testing

[5] Paul M. Duvall, Steve Matyas, and Andrew Glover, Continuous
Integration, Addison-Wesley, Boston, 2007.

[6] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby,
and Shmuel Ur. Testing multi-threaded java programs. IBM System
Journal Special Issue on Software Testing, 41(1), February 2002.

538

本文献由“学霸图书馆-文献云下载”收集自网络，仅供学习交流使用。

学霸图书馆（www.xuebalib.com）是一个“整合众多图书馆数据库资源，

提供一站式文献检索和下载服务”的24

小时在线不限IP

图书馆。

图书馆致力于便利、促进学习与科研，提供最强文献下载服务。

图书馆导航：

图书馆首页 文献云下载 图书馆入口 外文数据库大全 疑难文献辅助工具

http://www.xuebalib.com/cloud/
http://www.xuebalib.com/
http://www.xuebalib.com/cloud/
http://www.xuebalib.com/
http://www.xuebalib.com/vip.html
http://www.xuebalib.com/db.php
http://www.xuebalib.com/zixun/2014-08-15/44.html
http://www.xuebalib.com/

	Implementing an Effective Test Automation Framework
	学霸图书馆
	link:学霸图书馆

