Superior performance of anion exchange membrane water electrolyzer: ensemble of producing oxygen vacancies and controlling mass transfer resistance

Yoo Sei Park, Juchan Yang, Jongmin Lee, Myeong Je Jang, Jaehoon Jeong, Woo-Sung Choi, Yangdo Kim, Yadong Yin, Min Ho Seo, Zhongwei Chen, Sung Mook Choi

PII: S0926-3373(20)30691-3
DOI: https://doi.org/10.1016/j.apcatb.2020.119276
Reference: APCATB 119276

To appear in: Applied Catalysis B: Environmental

Received Date: 3 April 2020
Revised Date: 22 June 2020
Accepted Date: 24 June 2020

Superior performance of anion exchange membrane water electrolyzer: ensemble of producing oxygen vacancies and controlling mass transfer resistance

Yoo Sei Parka,b,†, Juchan Yanga,†, Jongmin Leec, Myeong Je Janga, Jaehoon Jeonga, Woo-Sung Choia, Yangdo Kimb, Yadong Yind, Min Ho Seoe,, Zhongwei Chene,, Sung Mook Choie,**

a Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science, Changwon, 642831, Republic of Korea
b Department of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
c Fuel Cell Research and Demonstration Center, Future Energy Research Division, Korea Institute of Energy Research, Buan-gun 56332, Republic of Korea
d Department of Chemistry, Materials Science and Engineering program and UCR Center for Catalysis University of California Riverside, CA 92521, USA.
e Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada

\footnote{These authors have contributed equally.}

\footnote{Corresponding author: E-mail: foirit@kier.re.kr (M.H.S), zhwchen@uwaterloo.ca (Z.C), akyzaky@kims.re.kr (C.M.C).}
Graphical abstract

Highlights
• Oxygen vacancies generated in CuCo-oxide through surface etching.
• CuCo-oxide with oxygen vacancies exhibited superior OER activity.
• Anion exchange membrane water electrolysis showed an excellent performance.

Abstract
A chemically etched CuCo-oxide (CE-CCO) electrode prepared by electrodeposition was used for oxygen evolution reaction electrocatalyst. Surface chemical etching of CuCo-oxide (CCO) introduced oxygen vacancies and thus increased electrical conductivity to promote oxygen generation. During practical applicability testing, when CE-CCO was used as the anode of an anion-exchange membrane water electrolyzer, enhanced oxygen evolution performance was observed (current density = 1390 mA/cm² at 1.8 Vcell), which, among other reactions, was
ascribed to the easy removal of O₂ from the aerophobic electrode surface. In addition to featuring low mass transfer resistance even at high current density with substantial gas generation, the CE-CCO electrode featured remarkable durability, exhibiting stable performance over 3600 h under the conditions of continuous O₂ evolution. Thus, this work shows that the performance of electrodeposited oxide catalysts can be enhanced by introducing oxygen vacancies, while the energy conversion efficiency of the corresponding water electrolysis systems can be increased by lowering mass transfer resistance via efficient gas removal and reactant supply.

Keywords: electrocatalyst, oxygen vacancy, oxygen evolution, hydrogen energy, anion exchange membrane water electrolysis

1. Introduction

Hydrogen is a renewable and sustainable energy source with its high energy density and no carbon emission. Today, hydrogen is largely produced by petrochemical processes such as the steam reforming of natural gas, gasification, and partial oxidation [1]. However, these processes inevitably release greenhouse gases into the atmosphere, which reduces the advantages of hydrogen energy. As a result, there have been many studies on the development of proton exchange membrane water electrolysis (PEMWE) system [1, 2] and alkaline water electrolysis (AWE) system [3-5], which can produce high purity hydrogen without any greenhouse gas emissions. Although the latter systems feature the advantages of high technology intensity, easy handing, and cost-effectiveness (due to use of non-precious metal catalysts), they employ liquid electrolytes and therefore suffer from the leakage of electrolyte, corrosion problem and low energy density. PEMWE systems exhibit high rates of hydrogen production together with high technological maturity, and are currently being commercialized. However, as these systems are operated under acidic conditions, the scope of oxygen evolution reaction (OER) electrocatalysts
is limited to expensive noble metal oxides such as RuO$_2$ and IrO$_2$, which places a certain limit on the reduction of hydrogen production costs [6]. To address these challenges, new anion-exchange membrane water electrolysis (AEMWE) systems combining the advantages of the above two platforms have been developed [7-10]. These systems can produce high-purity hydrogen using anion exchange membrane as the solid electrolyte, similarly to PEMWEs, and are operated in an alkaline environment, which allows them to employ inexpensive non-noble-metal catalysts [9]. Still, the performance of AEMWE systems is much lower than that of PEMWE ones because of the poor OER performance of non-precious-metal electrocatalysts. Therefore, many studies have been conducted on the development of non-precious-metal electrocatalysts with good OER performance so that the AEMWE system performance can approach the performance of the PEMWE systems.

The ultimate goal of developing non-precious-metal electrocatalysts for water electrolysis is the realization of large-scale cost-effective hydrogen production, which requires the use of high current densities (≥500 mA/cm2 at 1.8–2.4 V) [11, 12]. Importantly, both lab-scale and commercial-device (e.g., PEMWE and AEMWE) performance under actual operation conditions should be guaranteed. In commercial water splitting systems, the production of H$_2$ at the cathode is obstructed because of the slow kinetics of the OER ($4\text{OH}^- \rightarrow \text{O}_2 + 2\text{H}_2\text{O} + 4e^-$) at the anode [13]. Despite the importance of the OER, the high overpotential of OER acts as a bottleneck and decreases water splitting efficiency. Therefore, highly efficient OER electrocatalysts should be developed to improve the energy efficiency of water splitting.

Numerous non-precious-metal OER electrocatalysts with excellent activity have been reported, e.g., transition metal sulfides [14-17]/phosphides [11, 18, 19]/oxides [20-22] and layered double hydroxide [23-25]. The very low overpotentials (≤300 mV at 10 mA/cm2) and superior durability of these catalysts are expected to aid the commercialization of water electrolyzers. However, most related studies do not report the performance of these catalysts in commercial devices, as it is affected by parameters such as the conditions of membrane electrode assembly.
Applied Catalysis B: Environmental

(MEA) fabrication, cell operation temperature, electrolyte flow rate, and cell fabrication pressure [7, 9, 26, 27]. Above all, the high performance of a given catalyst in a laboratory setting does not guarantee the high performance of the corresponding commercial device [8]. Therefore, both lab-scale and commercial-device performances of electrocatalysts should be reported for a complete picture.

Traditionally, electrocatalysts have been synthesized in the form of powders, which places certain limitations on the electrode fabrication process, and hence, on electrode performance [7, 26]. Electrode fabrication can be described by numerous parameters such as slurry composition (solvent, catalyst, and binder) and coating method [2, 7, 28]. In addition, electrodes are typically subjected to heat treatment or high-temperature pressing [7, 26]. As the broad range of variables complicates the optimization of the electrode fabrication process, simple techniques of high-performance electrode fabrication are highly sought after. Electrodeposition is one of such techniques, featuring the direct deposition of electrocatalysts on a conductive substrate and thus allowing one to avoid the optimization of electrode fabrication conditions, which means that the performance of electrodeposited catalysts in commercial devices is guaranteed [19, 29].

Moreover, electrodeposited catalysts exhibit excellent electrical conductivity with lower ohmic contact resistance between the electrodeposited catalyst layer and the substrate than conventional powder-type catalysts mixed with polymeric binders such as polytetrafluoroethylene and ionomers to prevent catalyst detachment [30, 31]. Additionally, as electrocatalysts are directly grown on the substrate electrode, they are strongly bonded to the same and exhibit high mechanical strength. The compositional and morphological changes of electrocatalysts can be easily controlled by change of electrolyte composition, electrodeposition time, and potential [10, 22, 29, 32]. As catalytic reactions occur on the surface, large surface areas benefit catalyst performance. Control of electrodeposition conditions allows one to produce large-surface-area structures such as nanosheets, nanodendrites, and nanoparticles. Finally, electrodeposition-fabricated electrodes have an advantageous structure allowing for the
quick escape of oxygen generated at the anode due to low catalyst layer thickness [2, 33].
Therefore, mass transfer losses (η_{mass}) at various overpotentials, e.g., ohmic (η_{ohm}) and kinetic (η_{kin}) losses, observed during water decomposition can be greatly reduced to decrease the total overpotential in AEMWE systems.

Herein, a hierarchically structured CuCo-oxide (CCO) OER electrocatalyst is prepared via electrochemical co-precipitation of Cu and Co hydroxides onto Ni foam (NF) followed by surface chemical etching and annealing, and chemically etched CuCo-oxide (CE-CCO)/NF is directly used as an OER electrode. Furthermore, we not only probe the characteristics of the above electrocatalyst but also report its performance in a model commercial AEMWE system. The CE-CCO/NF electrode is shown to exhibit remarkable catalytic activity and stability for the OER (310 mV at 100 mA/cm2; operation time = 3600 h) in a half-cell test, additionally featuring exceptional OER performance (1390 mA at 1.8 V$_{\text{cell}}$) in an AEMWE system.

2. Experimental

2.1 Preparation of CE-CCO

The CE-CCO electrode was prepared by electrodeposition in a solution (50 mL) containing Co(NO$_3$)$_2$·6H$_2$O (50 mM) and Cu(NO$_3$)$_2$·2.5H$_2$O (15 mM), with nickel foam (NF) used as the working electrode substrate. Prior to electrodeposition, NF was etched with 5 M HCl for 30 min to remove surface oxide layers. A Pt mesh (3 cm × 4 cm) and a saturated calomel electrode (SCE) separated by a distance of 1 cm were used as counter and reference electrodes, respectively. (Cu,Co)(OH)$_2$ was electrodeposited on NF (working area = 0.49 cm2 for half-cell test, 7.4 cm2 for AEMWE) at a constant potential of -1 V$_{\text{SCE}}$ (versus SCE) for 5 min at 30 °C without stirring, and the obtained electrode was thoroughly rinsed with deionized water, immersed into 0.2 M ammonium persulfate (APS) for several seconds, and then rinsed several times with deionized water. The sample was then air-dried and heated to 250 °C for 3 h at 1 °C/min. This electrocatalyst was named as CE-CCO and the loading amount of CE-CCO in
NF was about 3.8 mg/cm². To compare the chemical etching effect, the CuCo oxide (CCO) was synthesized with the same way used for making CE-CCO mentioned above except of chemical etching process.

2.2 Physical property characterization

Sample morphologies and compositions were analyzed by field-emission scanning electron microscope (JSM-7001F, JEOL, Japan) coupled with energy-dispersive X-ray spectrometry. X-ray diffraction patterns were recorded on an X-ray diffractometer (D/MAX 2500, Rigaku, Tokyo, Japan) for 2θ = 20–80° at a scan speed of 1°/min using Cu Kα radiation. XPS measurements were performed on a K-alpha (ThermoFisher Scientific, Waltham, MA) spectrometer, and high-resolution transmission electron microscope (HRTEM) images and SAED patterns were recorded on an JEM-2100F (JEOL, Tokyo, Japan).

2.3 Electrochemical characterization

Electrochemical measurements were performed using a potentiostat (VMP-3, Biologic) in a three-electrode cell with 1 M KOH as an electrolyte at room temperature. A Pt mesh (3 cm × 4 cm) was used as a counter electrode, and Hg/HgO (1 M KOH) was used as a reference electrode. All potentials were referenced to the RHE using the Nernst equation (ERHE (V) = EHg/HgO + 0.106 + 0.059pH). The value of 0.106 V is the difference between the Hg/HgO (1 M KOH) electrode and the RHE under the chosen laboratory conditions. Although the ideal potential of the Hg/HgO (1 M KOH) electrode is 0.098 V, it was calculated as 0.106 V for accurate testing. N₂-saturated 1 M KOH was used as an electrolyte for the OER test. OER activity was investigated by linear sweep voltammetry (LSV) at a rate of 5 mV/s. Electrochemical surface areas (ECSAs) was calculated from double layer capacitance (Cdl) using cyclic voltammetry (CV) measurements at scan rates of 5–80 mV/s in the non-faradaic region in 1 M KOH: ECSA = Cdl/Cs, where Cs = 40 μF/cm² is the smooth-plane capacitance of a metal surface. Stability
was investigated at a constant current density of 20 mA/cm² for 3600 h. All electrochemical results were obtained using an iR compensation of 85%. For comparison, commercially IrO₂ powders (Sigma Aldrich, 99.9 % trace metal basis) were tested by droplet of the catalyst ink placed on Ni foam with same size of CE-CCO.

2.4 AEMWE single cell fabrication

The AEMWE system comprised the anode (CuCo-oxide on nickel foam, 7.4 cm²), cathode (1 mg/cm² of Pt/C (40 wt.%, HISPEC 4000, Johnson Matthey) on carbon cloth (Toray), 4.9 cm²), gas diffusion layer (NF, Alantum, pore size: 450 µm), and anion exchange membrane (AEM, X37-50 Grade T, Dioxide Materials), as shown in Fig. 6a. IrO₂ powder (Sigma Aldrich) was used as an anode catalyst for comparison with precious metal oxides and loaded on NF with PTFE. The loading amount of IrO₂ was 4 mg/cm². The single cell was supplied with 1 M KOH as an electrolyte at 24 mL/min and was operated at 45 °C. The AEMWE test was performed using a potentiostat (BP2C, ZIVE LAB), and electrochemical performance was analyzed by constant-potential and LSV (from 1.4 to 1.9 V cell) measurements. The long-term testing of AEMWE systems was conducted at 500 mA/cm² for 64 h. Energetic efficiency of the AEMWE was calculated by the following equation.

$$\eta = \frac{E_{\text{output}}}{E_{\text{input}}} = \frac{V_{\text{H₂}}H_0}{Wh} \times 100$$

Wh is the electric power to produce hydrogen, H₀ is the calorific value of hydrogen (10.8 x 10⁶ J/m³, lower heating value) and V_H₂ is the hydrogen gas volume.

2.5 Computational details

DFT calculations was performed using the Vienna ab initio Simulation Package [34]. The projector augmented wave pseudopotential was used to replace the interaction of core electrons [35, 36]. Electron exchange-correlation energies were calculated using Perdew-Burke-
Ernzerhof functionals and the generalized gradient approximation [37, 38]. Kohn-Sham wave functions of valence electrons were expanded using a plane wave basis set with an energy cut-off of 520 eV. In addition, the Hubbard U parameter (GGA+U) was employed to improve the description of correlation effects and reduce the self-interaction error [39-41]. The Methfessel-Paxton smearing method was implemented [42]. Optimized effective interaction parameters $U_{\text{eff}} (U_{\text{eff}} = U – J)$ of 3.4 and 4 eV were used for Co and Cu, respectively, in CuCo$_5$O$_8$ and CuCo$_5$O$_7$. The total energy for the ionic relaxation step was controlled within 1×10^{-4} eV. A gamma point mesh with $(21 \times 21 \times 21)$ k-points was used for CuCo$_5$O$_8$ and CuCo$_5$O$_7$ unit cells to sample the Brillouin zone for bulk calculations. After the geometric optimization of bulk CuCo$_5$O$_8$ and CuCo$_5$O$_7$, slab models were designed and calculated in terms of the (110) surface direction with a $(6 \times 6 \times 1)$ k-point mesh for a (1×1) surface unit cell and with smaller meshes for larger supercells. A vacuum space of 30 Å was employed to avoid interactions between top and bottom surfaces. After each crystal surface energy was calculated, oxygen-containing intermediates (O, OH, OOH and O$_2$) were deposited on the (110) surfaces of CuCo$_5$O$_8$ and CuCo$_5$O$_7$ to draw the free energy diagram. To simulate the effect of solvation by water, point charges were added in the vacuum slab using the implicitly implemented method of VASPsol [43]. Finally, the charge density difference between CuCo$_5$O$_8$ (110) and CuCo$_5$O$_7$ (110) facets was calculated by Bader charge analysis [44].

3. Results and discussion

The CE-CCO electrode was electrodeposited using a modification of a previously reported method (Fig. 1) [22]. Specifically, a mixture of Cu and Co hydroxide nanosheet arrays was electrodeposited on NF, with the equations describing the electrodeposition process given below [29].

$$\begin{align*}
\NO_3^- + 7 \text{H}_2\text{O} + 8 e^- & \rightarrow \text{NH}_4^+ + 10 \text{OH}^- & (1) \\
\text{Cu}^{2+} + \text{Co}^{2+} + 2 \text{OH}^- & \rightarrow (\text{Cu,Co})(\text{OH})_2 & (2)
\end{align*}$$
At the onset of electrodeposition, NO$_3^-$ was reduced to NH$_4^+$ and OH$. The latter anions reacted with Cu (II) and Co (II) ions to afford a precipitate of (Cu,Co)(OH)$_2$ (CCHO) nanosheets with a honeycomb morphology and a thickness of 20–30 nm on NF (Fig. 1). The CCHO-deposited on NF was then immersed into 0.2 M ammonium persulfate (APS) for several seconds, which resulted in oxidation of the CCHO surface and, hence, in a change from a nanosheet array to crumbled nanosheets. The surface morphology was not changed after annealing. The thickness of CCO was ~2.9 μm (Fig. S1), whereas that of CE-CCO was lower (2.2 μm) because of chemical etching (Fig. S2).

Further structural characterization of CCO/CE-CCO was performed by high-resolution transmission electron microscopy (TEM; Figs. 2a,c and S3), and the corresponding selected-area electron diffraction (SAED) patterns revealed the presence of a spinel-type polycrystalline Co$_3$O$_4$ structure. However, the similarity of unit cell parameters did not allow Co$_3$O$_4$ to be distinguished from CCO/CE-CCO [a = b = c = 8.065 Å for Co$_3$O$_4$ and a = b = c = 8.140 Å for CuCo$_2$O$_4$]. EDS mapping revealed the presence of Cu, Co, and O in the nanostructures and demonstrated that all CCO and CE-CCO components were uniformly distributed (Fig. 2b,d).

In particular, intensive distribution of Cu in CCO and CE-CCO was observed, and the corresponding region was presumed to be CuO. X-ray diffraction (XRD) analysis (Fig. 2e) showed that CCO and CE-CCO contained CuO (JCPDS: 00-005-0661) and Cu$_{0.75}$Co$_{2.05}$O$_4$ (JCPDS: 01-078-2176). Notably, CE-CCO showed low crystallinity, as indicated by peak broadening because of etching effect. The decreased peak intensity and increased peak width indicate smaller crystallites and higher structural disorders in CE-CCO[45]. Peaks at 44.6°, 51.9°, and 76.8° corresponded to metallic Ni (JCPDS: 00-001-1260) from NF. As the OER mainly occurs on the electrocatalyst surface, we probed the surface electronic properties of CCO and CE-CCO by X-ray photoelectron spectroscopy (XPS), and the corresponding survey spectra (Fig. S4) indicated the presence of Cu, Co, and O. Figures 3(a–d) present high-
resolution Cu 2p, Co 2p, and O 1s spectra, revealing the presence of Co 2p$_{3/2}$ and Co 2p$_{1/2}$ peaks at 780 and 795 eV, for both CCO and CE-CCO, respectively [46-48].

Compared to that of CCO, the Co 2p spectrum of CE-CCO featured higher-intensity satellite peaks at 785.58 and 803.28 eV, which indicated an increased content of Co$^{2+}$ due to the partial reduction of Co$^{3+}$. According to a previous report [46, 49, 50], the Co$^{2+}$/Co$^{3+}$ ratio is positively correlated with the concentration of oxygen vacancies. To confirm this suggestion, we calculated the above ratios from the integrated areas of Co 2p peaks and the relative sensitivity factor as 0.76 and 1.55 for CCO and CE-CCO, respectively. Thus, CE-CCO had a higher concentration of surface oxygen vacancies than CCO. To gain further insights, O 1s spectra were deconvoluted into peaks of chemisorbed water (O$_W$: \sim 532.5 eV), oxygen vacancies (O$_V$: \sim 531.8 eV), hydroxyls (O$_{OH}$: \sim 531 eV) and lattice oxygen (O$_L$: \sim 530 eV), as shown in Fig. 3b [21, 50]. Compared to CCO, CE-CCO featured a more intense O$_V$ signal, which, together with the results above, indicated that the Co$^{2+}$/Co$^{3+}$ ratio was positively correlated with surface oxygen vacancy concentration (Fig. 3c).

Investigation of the relationship between oxygen vacancy and electrocatalytic effect suggests that the introduction of oxygen vacancies into Co$_3$O$_4$ changes the adsorption energy of H$_2$O molecules at active sites to enhance OER performance [51]. The impact of this factors on electrocatalytic effects is discussed below. As shown in figure 3d, the two main peak at binding energies of \sim 934 eV (Cu2p$_{3/2}$) and \sim 954 eV (Cu2p$_{1/2}$) could be deconvoluted into four peak components, and these could be best fitted to the spinel oxide of Cu$^{1+}$ and Cu$^{2+}$ [22].

The relationship between local-structure oxygen vacancies and Co oxidation states in CCO and CE-CCO was probed by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements. As shown in Fig. 3e, the Co K-edge of CCO was shifted to lower energy in the CE-CCO, which was attributed to the lower Co oxidation state due to oxygen vacancy presence [52]. Moreover, the presence of oxygen
vacancies was confirmed by EXAFS-based observation of Co local structure (Fig. 3f). The first peak corresponded to Co–O distances in tetrahedral (Co$^{2+}$–O) and octahedral (Co$^{3+}$–O) settings, and the second peak corresponded to the Co–Co distance between two octahedral units (Co$^{3+}$–Co$^{3+}$) [18]. The Co–O bonds of CE-CCO were shorter than those of CCO, in agreement with the presence of oxygen vacancies [53].

The electrochemical behavior of NF, CE-CCO, and IrO$_2$ electrodes in an alkaline medium was investigated by linear sweep voltammetry (LSV) (Fig. 4a). The CE-CCO electrode was compared to that comprising commercial IrO$_2$, which is one of the best OER electrocatalysts available to date. Although CE-CCO showed a higher onset potential than IrO$_2$ at higher potentials, the current density of CE-CCO exponentially increased to a greater extent than in the case of IrO$_2$. Compared to IrO$_2$, which had an overpotential of 379 mV at 100 mA/cm2, CE-CCO featured a lower overpotential. Moreover, compared to CCO, CE-CCO exhibited higher catalytic activity and an exceptionally low OER overpotential of 310 mV at 100 mA/cm2 (Fig. S5). Electrocatalytic activity was further assessed by comparison of Tafel slopes (Fig. S6) and overpotentials at 100 mA/cm2 (Fig. 4b). The Tafel slopes of NF, IrO$_2$, CCO, and CE-CCO approximately equaled 70 mV/dec, in agreement with literature. Notably, a Tafel slope of 60 mV/dec corresponds to the chemical RDS of the OER after the first electron-transfer step [54, 55]. Electrochemical surface areas (ECSAs) were represented by double-layer capacitance (C_{dl}) determined from cyclic voltammetry (CV) curves recorded at different scan rates in the non-faradaic region (Fig. S7) [56]. The lowest (1.44 mF/cm2) and highest (5.57 mF/cm2) C_{dl} values were observed for NF and CCO, respectively. The reduced ECSA of CE-CCO was ascribed to the destruction of the large-surface-area nanosheet structure by surface oxidation before calcination. Figure S8 shows normalized polarization curves used to calculate current density per unit ECSA, revealing that the overpotentials required to achieve 1 mA/cm$^2_{ECSA}$ equaled 337 and 318 mV for CCO and CE-CCO, respectively. Thus, CE-CCO had a larger activity per unit ECSA than CCO. To investigate the intrinsic catalytic properties of CCO and CE-CCO, we
calculated the exchange current density \(j_0 \) from Tafel plots (Fig. S9), showing that the \(j_0 \) of CE-CCO \((2.77 \times 10^{-3} \text{ mA/cm}^2) \) exceeded that of CCO \((1.98 \times 10^{-3} \text{ mA/cm}^2) \). After normalization with respect to ECSA, CE-CCO still had a larger \(j_0 \) than CCO (Table S1) [7]. Therefore, we concluded that oxygen vacancy generation during chemical etching improved the intrinsic catalytic properties of CCO for the OER. Among the factors determining catalyst performance, stability is as important as catalytic activity. Hence, CE-CCO stability was probed by conducting an oxygen generation experiment at a constant current density of 20 mA/cm\(^2\) for 3600 h (~5 months; Fig. 4c). During the stability test, the electrolyte (1 M KOH) was replaced several times with a fresh solution, with the replacement date marked by a dotted line. The inset graph shows the fluctuation of overpotential due to the generation of oxygen gas and its removal from the electrode surface. To deliver a current density of 20 mA/cm\(^2\) without iR compensation, an overpotential of 294 mV was required. During the test, a sudden overpotential increase due to electrolyte evaporation was observed. After 3600 h, the overpotential at 20 mA/cm\(^2\) increased from 294 to 375 mV, i.e., 72.4% of the initial performance was maintained. SEM imaging of fresh and durability-tested CE-CCO (Fig. 4d) revealed that testing induced some surface morphology changes, even though the catalytic properties of CE-CCO were relatively well maintained. Also, comparison of polarization curves before/after OER stability testing (Fig. S10) showed that CE-CCO retained its excellent activity after 3600 h. XRD analysis revealed that the chemical composition of durability-tested CE-CCO corresponded to \(\text{Cu}_{0.15}\text{Co}_{2.85}\text{O}_4 \) (JCPDS: 78-2172), which reflected Cu dissolution during testing (Fig. S11).

Next, \(\text{CuCo}_5\text{O}_8 \) (e.g., CCO) and \(\text{CuCo}_5\text{O}_7 \) (e.g., CE-CCO) were characterized by first-principle density functional theory (DFT) calculations to understand the origin of OER activity. The \(\text{CuCo}_5\text{O}_8 \) model was designed based on \(\text{Co}_3\text{O}_4 \) in the Inorganic Crystal Structure Database (ICSD) [57]. To explain the thermodynamically stable structures, we considered every configuration to define Cu and O vacancy sites in the crystal lattice of \(\text{Co}_3\text{O}_4 \) using a cluster
expansion code [58, 59]. After geometry relaxation of all generated structures, the most thermodynamically stable one with the lowest ground-state energy was selected.

Figure S12 presents the simulated XRD patterns of CuCo₅O₈ and CuCo₅O₇, showing that peaks of metal oxides with and without oxygen vacancies appeared at almost identical angles, i.e., no marked position shift due to vacancy presence was observed. The lattice parameters of CuCo₅O₈ and CuCo₅O₇ were very similar, in agreement with the experimental patterns of Fig. 2(e).

Further insights into the surface reactions for the OER were obtained by constructing (111), (110), and (100) slab models of CuCo₅O₈ to determine the lowest-surface-energy structure, which was found to be the (110) one. Then, the CuCo₅O₇ (110) slab model was defined after removal of oxygen at vacancy sites investigated for the CuCo₅O₇ bulk structure. To understand the electronic structure of metal oxides, we calculated the atomic partial charges for CuCo₅O₈ and CuCo₅O₇ slab models using Bader charge analysis [44]. The difference in charge density was defined as shown in Eq. (3).

\[\rho = \rho_{\text{CuCoO}} - \rho_{\text{Cu}} - \rho_{\text{Co}} - \rho_{\text{O}} \]

Figure 5(a, b) presents charge densities for CuCo₅O₈ (110) and CuCo₅O₇ (110) z-axes, with light pink regions around Co corresponding to the accumulation of positive charge, and spring green areas around O representing the depletion of negative charge. The introduction of oxygen vacancies changed the electronic structure of Co on the CuCo₅O₇ (110) surface, decreasing the oxidation state of Co in the bulk layer, with corresponding charge differences determined as +1.31 e for CuCo₅O₈ and +1.18 e for CuCo₅O₇. In contrast, the charge differences of Co on the surface, where O* and OH* were bonded, were obtained as +1.12 e for CuCo₅O₈ and +0.85 e for CuCo₅O₇. Thus, the introduction of oxygen vacancies reduced the oxidation state of Co by modifying the electronic structure and was expected to affect the adsorption intensity of oxygen intermediates by less oxidizing than cobalt in CuCo₅O₈. The stronger adsorption of oxygen intermediates on the surface of CuCo₅O₇ (110) resulted in higher OER activity.
To compare the thermodynamics-determined electrochemical potential for spontaneous reactions and understand the mechanism of catalytic O$_2$ production, we constructed free energy diagrams after depositing oxygen intermediates on CuCo$_5$O$_8$ (110) and CuCo$_5$O$_7$ (110), as shown in Fig. 5(a, b).

For the above-designed models, four reaction paths were considered (Eqs. (4–7)):

$$4\text{OH}^{-}(aq) \leftrightarrow \text{OH}^{*} + 3\text{OH}^{-}(aq) + e^{-} \quad (4)$$

$$\text{OH}^{*} + 3\text{OH}^{-}(aq) + e^{-} \leftrightarrow \text{O}^{*} + \text{H}_2\text{O(l)} + 2\text{OH}^{-}(aq) + 2e^{-} \quad (5)$$

$$\text{O}^{*} + \text{H}_2\text{O(l)} + 2\text{OH}^{-}(aq) + 2e^{-} \leftrightarrow \text{O}^{*}\text{OH} + \text{H}_2\text{O(l)} + \text{OH}^{-}(aq) + 3e^{-} \quad (6)$$

$$\text{O}^{*}\text{OH} + \text{H}_2\text{O(l)} + \text{OH}^{-}(aq) + 3e^{-} \leftrightarrow \text{O}_2 + 2\text{H}_2\text{O(l)} + 4e^{-} \quad (7)$$

The relative free energy changes (ΔG) for oxygen intermediates were calculated as follows (Eq. (8)):

$$\Delta G = \Delta E + \Delta \text{ZPE} + T\Delta S \quad (8)$$

where ΔE is the DFT-calculated difference in ground-state energy, ΔZPE is the zero-point energy difference, and ΔS is the entropy difference. ΔZPE for each intermediate was corrected using the thermodynamic parameter table reported by Nørskov et al [60]. Potentials at pH 14 were referenced to the reversible hydrogen electrode (RHE) by shifting the electronic chemical potential according to Nernst’s law. The reversible potentials (U^0) for the above steps were derived as follows (Eqs. (9–12), see our previous works for details [61, 62]):

$$\Delta G_1 = \Delta G_{\text{OH}^{*}} - \Delta G_{\text{H}_2\text{O},\text{aq}} + \frac{1}{2} \Delta G_{\text{H}_2} + kT \ln a_{\text{H}^+}^* - eU_1^* \quad (9)$$

$$\Delta G_2 = \Delta G_{\text{O}^{*}} - \Delta G_{\text{OH}^{*}} + \frac{1}{2} \Delta G_{\text{H}_2} + kT \ln a_{\text{H}^+}^* - eU_2^* \quad (10)$$

$$\Delta G_3 = \Delta G_{\text{O}^{*}\text{OH}} - \Delta G_{\text{O}^{*}} - \Delta G_{\text{H}_2,\text{aq}} + \frac{1}{2} \Delta G_{\text{H}_2} + kT \ln a_{\text{H}^+}^* - eU_3^* \quad (11)$$

$$\Delta G_4 = \Delta G_{\text{O}_2,\text{g}} - \Delta G_{\text{O}^{*}\text{OH}} + \frac{1}{2} \Delta G_{\text{H}_2} + kT \ln a_{\text{H}^+}^* - eU_4^* \quad (12)$$

where ΔG_i is the free energy difference for O^*, OH^*, OOH^*, or O^{*}OH^*.

15
According to the Sabatier principle, used to understand the kinetics of reactions where the relative adsorption energies of reaction intermediates govern catalytic activity, the catalyst-reactant interaction energy should be neither too strong nor too weak \cite{34, 61, 63}. Figure 5(c, d) presents the free energy differences for all OER steps on CuCo$_5$O$_8$ (110) and CuCo$_5$O$_7$ (110), with reversible electronic chemical potentials denoted by black ($U = 0$), blue ($U = 1.228$ V), and red (exothermic reversible electrode potential) lines. The exothermic OER reaction potential on CuCo$_5$O$_8$ (110) was obtained as 1.760 V vs. RHE, showing a downhill shape in Fig. 5c. Remarkably, the electronic potential on vacancy-containing CuCo$_5$O$_7$ (110) was lower (1.498 V) than that of CuCo$_5$O$_8$ (110), indicating that lower overpotentials correspond to better OER activity. The RDSs for CuCo$_5$O$_8$ (110) and CuCo$_5$O$_7$ (110) corresponded to Eqs. (4) and (6), respectively. In the case of vacancy-free CuCo$_5$O$_8$ (110), O*OH* bonding on the surface was very difficult and thus acted a bottleneck for O$_2$ production. On the other hand, the removal of oxygen from the bulk lattice facilitated O*OH* bonding, and the RDS changed to OH* formation (Eq. (4)). These results explained why the presence of oxygen vacancies in the CuCoO lattice leads to better OER catalytic activity, revealing that these (etching-generated) vacancies change the electronic structure of Cu and Co to facilitate the adsorption/desorption of oxygen intermediates on/from the catalyst surface.

To confirm the practical full cell performance, we assembled an AEMWE system (Fig. 6a) comprising a current collector (stainless plate), electrolyte solution (1 M KOH) in-/outlet, gas diffusion layers (NF), and an MEA identical to that of fuel cell systems and containing an anion-exchange membrane (AEM) and hydrogen evolution reaction(HER)/OER electrodes. CE-CCO was used as the anode and Pt/C was used as the cathode. As raw NF had a rough surface, CE-CCO was electrodeposited on pressed NF to prevent membrane physical damage. The electrolyte temperature was held constant at 45 °C.

Although AEMWE performance could be improved by increasing temperature because of the concomitant improvement of ion conductivity, mass transportation, and electrode kinetics, the
corrosive environment created at overly high temperatures accelerated AEM degradation. Therefore, the constructed system was operated at a relatively low temperature [7, 64]. Figure 6b shows the linear voltammetry curves of AEMWE systems between 1.4 and 1.9 V_{\text{cell}}. As the ultimate goal of the development of a water electrolysis catalyst is its application in commercial devices, no iR compensation was performed to observe performance under real operation conditions. The operation of AEMWE could be seen in a video in supporting information. The CE-CCO AEMWE system exhibited high OER activity in the high cell voltage region (≥1.8 V_{\text{cell}}). The Pt/C || CE-CCO (cathode || anode) system had a lower overpotential than the Pt/C || IrO₂ one (1390 and 900 mA/cm² at 1.8 V_{\text{cell}}, respectively). Figure 6c shows iR-corrected Tafel plots for Pt/C || IrO₂ and Pt/C || CE-CCO systems, revealing that similar Tafel slopes of ~130 mV/dec were obtained in both cases. However, it is unreasonable to compare the Tafel slope of these systems with those reported in literature. Although the OER/HER mechanisms and Tafel slopes are established to some extent under acidic conditions, the corresponding mechanisms operating under alkaline conditions remain underexplored and controversial, which complicates meaningful data comparison and highlights the need for further mechanistic investigations of AEMWE systems [9, 65]. Figure 6c shows that a significant deviation from the Tafel line (dot line in Fig.6c) was observed for Pt/C || IrO₂ with increasing cell voltage. To understand the reason for this phenomenon, the total overpotential (\(\eta_{\text{total}}\)) was divided into \(\eta_{\text{ohm}}, \eta_{\text{kin}},\) and \(\eta_{\text{mass}},\) as shown in Fig. 7a [1, 66]. At an AEMWE current density of 200 mA/cm², Pt/C || IrO₂ featured a lower \(\eta_{\text{total}}\) than Pt/C || CE-CCO. In this current density region, both total overpotentials featured negligible \(\eta_{\text{mass}}\) contributions. However, at higher current densities, \(\eta_{\text{total}}\) of Pt/C || IrO₂ exceeded that of Pt/C || CE-CCO, largely because of the increase in \(\eta_{\text{mass}}.\) Even at a current density of 1200 mA/cm², \(\eta_{\text{mass}}\) of Pt/C || IrO₂ accounted for 35.4% of \(\eta_{\text{total}}\), whereas the corresponding value for Pt/C || CE-CCO was as small as 10.4%. Although Pt/C || IrO₂ showed better performance than Pt/C || CE-CCO at low current densities, high mass transfer losses (\(\eta_{\text{mass}}\)) resulted in performance reversal at high current densities. This phenomenon was
ascribed to the high density of catalyst layers and the presence of a polymeric binder–containing IrO$_2$ anode. Dense catalyst layers restricted electrolyte passage through the OER electrode and thus interfered with the smooth supply of the electrolyte [33]. On the other hand, CE-CCO was deposited as a thin layer directly on the porous (i.e., permeable to the electrolyte) NF. The rate of oxygen gas removal from the electrode surface is another key factor influencing overall performance, as the active sites are blocked if the generated oxygen gas is not easily desorbed. In order for oxygen gas desorption to be facile, the electrode surface must have a weak affinity to this gas, i.e., needs to be aerophobic [67]. Herein, electrode aerophobicity was probed by wettability measurements, as surface aerophobicity is positively correlated with hydrophilicity [68]. The surface of the CE-CCO electrode was super-hydrophilic, i.e., superaerophobic, and that of the IrO$_2$/binder electrode was hydrophobic, i.e., aerophilic (Fig. 7b). In addition, the former electrode readily absorbed liquid brought in contact with its surface, whereas the latter electrode did not (Figs. 7b and S13). This phenomenon was an important clue explaining why the Pt/C II CE-CCO system had a low η_{mass}. As CE-CCO was aerophobic, the generated oxygen gas was easily desorbed from the electrode surface, which allowed the facile supply of new reactants thereto. Therefore, especially in the high current density region characterized by violent gas generation, CE-CCO showed excellent performance.

In view of the fact that industrial water electrolyzers are operated at high current densities ($\geq 500\ \text{mA/cm}^2$), the reduction of mass transfer losses is a task of high importance. In this respect, the Pt/C || CE-CCO electrode electrodeposited on NF is ideal for practical application in commercial water electrolyzers, additionally featuring the highest performance among all currently reported electrodes (Fig. 8)[7, 9, 22, 26-28, 55, 69-80]. The superior performance of AEMWE in this study is considered to be due to electrodeposited electrode unlike the previous study. Although the results of previous studies evaluating the performance in AEMWE using CCO as a electrocatalyst for OER were relatively reported, all electrode were fabricated by spray or decal method [9, 22, 55, 69, 78, 79, 80]. This method increases the cell resistance
because it uses a binder with poor electrical conductivity. In addition, since an electrode having a dense catalyst layer is used, the mass transfer resistance in the high current region is increased. The durability of the fabricated AEMWE systems was tested by 64 h application of high current density (500 mA/cm²) to single cells (Fig. 6d). The AEMWE containing CE-CCO showed good durability, featuring an initial overpotential of 1.66 V$_{\text{cell}}$ that gradually increased to 1.74 V$_{\text{cell}}$, which corresponded to the retention of 82 % of the initial performance. For comparison of durability, the anode electrode for AEMWE was prepared using IrO$_2$ electrocatalyst. (Fig. S14) When this electrode was applied under the same test conditions, the cell voltage (V$_{\text{cell}}$) increased by 0.38 V$_{\text{cell}}$ compared to the initial value which showed poor durability than that of CE-CCO. In addition, the produced hydrogen gas volume was measured in real time during the durability test. The amount of hydrogen gas was 14.2 mL/min, which was constant during the durability test. The initial efficiency was 83 %, and only 4% of efficiency loss was observed during the durability test. These results indicate that the CE-CCO anode can be applied to commercialized AEMWE.

4. Conclusion
A chemical etching–based method of introducing oxygen defects into CCO was developed and used to prepare an electrocatalyst for the OER under alkaline conditions. Despite the decrease in electrochemical surface area due to etching, the chemically etched CCO exhibited enhanced OER performance and remarkable durability (>3600 h) due to the changed electronic structure of Cu and Co. The above material was directly used as the anode of an AEMWE full cell, which featured high performance (1390 mA/cm² at 1.8 V$_{\text{cell}}$), especially at high current density, attributable to very low mass transfer resistance.

Credit Author Statement
Y.S.P. and Dr. J. Y. wrote the draft publication and maintained the lead position in research. Y.S.P., Dr. W.C. synthesized the electrocatalysts and evaluated their electrochemical properties. J.L. and Dr. M.H.S conducted the DFT calculations. Y.S.P. and Dr. J.Y. performed the AEMWE test. J.J. and M.J.J. assisted the physical characterizations. Prof. Y.K. and Prof. Y.Y. interpreted the XPS and XAFS. Dr. M.H.S., Prof. Z.C. and Dr. S.M.C. supervised this research and improved the concept of research.

Declaration of interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements
This research was supported by the Fundamental Research Program of the KIMS (PNK6680 & PNK7280) & the New & Renewable Energy Core Technology Program of the KETEP (KETEP-20173010032080) & Development Program of KIER (C0-2405) in the Republic of Korea.
Figure 1. Schematic illustration depicting the synthesis of the chemical etched CuCoO$_4$ anode in this work. (1) Panel represent the nickel foam (NF) substrate, which was used 3D-support electrode. (2) The CuCo(OH)$_2$ was deposited on NF by electrodeposition. (3) Surface of CuCo(OH)$_2$ was chemical etched by ammonium persulfate (APS). (4) CuCoO$_4$ was converted from CuCo(OH)$_2$ by calcination.
Figure 2. Physical characterization of the CCO and CE-CCO anode. (a) High resolution-transmission electron microscopy images of CCO and inset show SAED ring pattern of CCO. (b) EDS mapping of Cu (red) / Co (blue) / O (yellow) in CCO. (c) HR-TEM images of CE-CCO and inset show SAED ring pattern of CE-CCO. (d) EDS mapping of Cu (red) / Co (blue) / O (yellow) in CE-CCO. (e) X-ray diffraction patterns of the CCO (orange line) and CE-CCO (green line) with reference patterns (Cu$_{0.75}$Co$_{2.05}$O$_4$: royal blue, CuO: grey).
Figure 3. Investigation of the electronic structure of the CCO and CE-CCO anode. X-ray photoelectron spectra of Co 2p (a), O 1s (b) and Cu 2p (c). (d) The Ratio of Co ([Co$^{2+}$] and [Co$^{3+}$]) and O ([O$_{\text{Vacancy}}$] and [O$_{\text{Lattice}}$]) was calculated from XPS results by using integral area of each element. (e) XANES spectra recorded at the Co K-edge of CCO and CE-CCO. (f) Fourier transforms (FT) of EXAFS spectra collected at Co K-edge of CCO and CE-CCO.
Figure 4. Electrochemical characterization of CE-CCO anode for OER in 1 M KOH. (a) Linear sweep voltammograms (85% iR-compensated) of the CE-CCO (blue line), commercial IrO₂ (green line) and commercial nickel foam (grey line). (b) Comparison of the overpotential at 100 mA/cm² and Tafel slope for OER obtained from LSV. (c) Durability tests of CE-CCO at 20 mA/cm² for 3600 hours. (d) Scanning electrom microscopy (SEM) image of surface morphology for CE-CCO before/after durability test.
Figure 5. Bader charge density of (a) CuCo$_5$O$_8$ (110) and (b) CuCo$_5$O$_7$ (110). * and ** are adsorption sites of O* and OH*. Standard free energy diagrams on (c) CuCo$_5$O$_8$ (110) and (d) CuCo$_5$O$_7$ (110) for OER obtained at zero potential (U = 0), and at the potential for which all step proceed downward at pH 14 and T = 298 K.
Figure 6. Anion exchange membrane water electrolyzer (AEMWE) performance. (a) Photograph of the AEMWE configuration. The configuration of MEA is as follows: gas diffusion layer (GDL) || cathode (Pt/C) || AEM || anode (IrO2 and CE-CCO) || GDL. The electrolyte is supplied to the anode, the anode is wet electrode and the cathode is dry electrode. (b) The polarization curves (without iR-correction) of AEMWE (Pt/C || IrO2 and Pt/C || CE-CCO) in 1M KOH at 45 ℃. The inset image in (b) is evolved hydrogen bubbles from the cathode part (the following is the ESI related to this article Video S1). (c) Tafel plots of polarization curves for a AEMWE with an Pt/C || IrO2 and Pt/C || CE-CCO. (d) The durability voltage-time plots for the AEMWE at 500 mA/cm² during 64 hours in 1 M KOH at 45 ℃
Figure 7. Overvoltage subdivision of AEMWE. (a) The overvoltage of AEMWE was subdivided into ohmic overvoltage (η_{ohm}), kinetic overvoltage (η_{kin}) and mass-transfer overvoltage (η_{mass}) at low, mid and high current density region. (b) The wettability of the IrO$_2$ and CE-CCO anode was observed by distilled water on the electrode surface.
Figure 8. Comparison of current density at $1.8 \ V_{\text{cell}}$ and above $1.8 \ V_{\text{cell}}$ as-prepared electrodes and other reported electrodes to drive AEMWE system.
REFERENCE

[38] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, 6 (1996) 15-50.

