Bounds on the ABC spectral radius and ABC energy of graphs

Modjtaba Ghorbania, Xueliang Lib, Mardjan Hakimi-Nezhaada, Junming Wangb

a Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 - 136, Islamic Republic of Iran
b Center for Combinatorics, Nankai University, Tianjin 300071, China

Abstract

In this paper, we obtain some bounds for the ABC spectral radius of general graphs. In continuing, we get some properties of the ABC eigenvalues of graphs, and then we establish some new bounds for the ABC energy E_{ABC}. Finally, we set up the correlation between the ABC energy and other classes of graph energies.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let $G = (V, E)$ be a simple graph with n vertices, m edges, whose adjacency matrix is $A(G)$. For $v \in V$, the degree of v is denoted by d_v and the set of vertices adjacent to v in G is denoted by $N(v)$. Here the maximum degree and the minimum degree of G
are denoted by Δ and δ, respectively. The graph $G + e$ is constructed from G by adding an edge $e = uv$, where u, v are not adjacent in G. The complete graph, the star graph, the cycle graph and the path graph on n vertices are denoted by K_n, S_n, C_n and P_n, respectively. A complete bipartite graph with a bipartition of sizes n_1 and n_2 is denoted by K_{n_1,n_2}, where $n_1 + n_2 = n$.

The eigenvalues of a graph G are the roots of the characteristic polynomial $P_G(\lambda) = \det(\lambda I - A(G))$, where I is the identity matrix of order n. The adjacency energy or briefly the energy of G is a graph invariant which was introduced by Ivan Gutman [7]. It is defined as $E_A(G) = \sum_{i=1}^{n} |\lambda_i|$, where λ_i’s are eigenvalues of G. More on the energy of graphs can be found in [10].

The Randić matrix $R = (r_{ij})$ is defined as $r_{ij} = 1/\sqrt{d_i d_j}$ if the i-th and j-th vertices are adjacent and $r_{ij} = 0$, otherwise. The Randić energy $E_R(G)$ is the sum of absolute values of the eigenvalues of R. The general Randić index or the branching index was defined as $R_{-1}(G) = \sum_{v_i \sim v_j} (1/d_i d_j)$, see [11].

The atom-bond connectivity matrix $ABC = [ABC_{i,j}]_{n \times n}$ is defined as:

$$ABC_{i,j} = \begin{cases} \sqrt{\frac{d_i + d_j - 2}{d_i d_j}}, & \text{if } v_i \text{ is adjacent to } v_j; \\ 0, & \text{otherwise.} \end{cases}$$

The eigenvalues of this matrix are the ABC eigenvalues of G denoted by $\nu_1 \geq \nu_2 \geq \cdots \geq \nu_n$. A multiset consisting of the ABC eigenvalues of G is called the ABC spectrum of G and we denote it by $\text{Spec}_{ABC}(G)$. If G has exactly s distinct ABC eigenvalues $\nu_1, \nu_2, \ldots, \nu_s$ with multiplicities t_1, t_2, \ldots, t_s, respectively, then we write $\text{Spec}_{ABC}(G) = \{[\nu_1]^{t_1}, [\nu_2]^{t_2}, \ldots, [\nu_s]^{t_s}\}$. The ABC spectral radius of G is the largest eigenvalue of the ABC matrix of G, which is denoted by $\nu_1(G)$. The ABC energy of a graph G is defined as $E_{ABC}(G) = \sum_{i=1}^{n} |\nu_i|$; see [3,4].

Lemma 1.1. [3] For a graph G of order $n \geq 3$ with no isolated vertices, we have

1) $\sum_{i=1}^{n} \nu_i = 0,$

2) $\sum_{i=1}^{n} \nu_i^2 = 2(n - 2R_{-1}(G)).$

2. Bounds for the spectral radius of the ABC matrix

Here we give some bounds for the spectral radius of the ABC matrix.

Lemma 2.1. [1] (Perron-Frobenius Theorem) Let $T \geq 0$ be an irreducible matrix with spectral radius θ_0. Suppose $t \in \mathbb{R}$, and $x \geq 0, x \neq 0$. If $T x \leq t x$, then $t \geq \theta_0$.
Theorem 2.1. An upper bound for the ABC spectral radius of a connected graph \(G \) with \(n \geq 3 \) vertices is

\[\nu_1(G) \leq \sqrt{2n - 4}, \tag{1} \]

and equality holds if and only if \(G \cong K_n \).

Proof. Set \(x_i = \sqrt{d_i} \). For a connected graph \(G \), clearly we have that for each vertex \(v_i \), \(d_i \leq n - 1 \), and therefore, for any vertex \(v_i \) in \(G \), we yield that

\[
(ABCx)_i = \sum_{v_j \in N(v_i)} \sqrt{\frac{d_i + d_j - 2}{d_id_j}} \sqrt{d_j}
\]

\[
= \sum_{v_j \in N(v_i)} \sqrt{\frac{d_i + d_j - 2}{d_i}} \leq d_i \sqrt{\frac{2n - 4}{d_i}} = \sqrt{2n - 4 \sqrt{d_i}}.
\]

By Lemma 2.1, we have \(\nu_1(G) \leq \sqrt{2n - 4} \). If the equality holds, we obtain that for any pair of vertices \(v_i \) and \(v_j \), \(d_i + d_j = 2n - 2 \). Together with the fact that \(d_i \leq n - 1 \), we know that \(d_i = n - 1 \) (i \(\leq i \leq n \)). Therefore, \(G \) is a complete graph. \(\square \)

Theorem 2.2. Let \(G \) be a connected bipartite graph of order \(n \geq 3 \) vertices. Then

\[\nu_1(G) \leq \sqrt{n - 2}, \]

and equality holds if and only if \(G \cong K_{n_1,n_2} \), where \(n = n_1 + n_2 \).

Proof. The proof follows directly from that for Theorem 2.1, by substituting \(d_i + d_j \leq 2n - 2 \) with \(d_i + d_j \leq n \) (holding for any pair of adjacent vertices in bipartite graphs). \(\square \)

Theorem 2.3. Let \(G \) be an \(r \)-regular graph. Then

i) \(\sqrt{2r - 2} \) is an ABC eigenvalue of \(G \).

ii) If \(G \) is connected, then the multiplicity of \(\sqrt{2r - 2} \) is one.

iii) For any ABC eigenvalue \(\nu \), we have \(|\nu| \leq \sqrt{2r - 2} \).

Proof. (i) Suppose \(u = [1,1,\ldots,1]^T \). Then we have \(ABCu = \sqrt{2r - 2}u \), which means that \(\sqrt{2r - 2} \) is an ABC eigenvalue of \(G \).

(ii) Let \(x = [x_1,x_2,\ldots,x_n]^T \) be a non-zero vector, where \(ABCx = \sqrt{2r - 2}x \), and suppose that \(x_i \) is an entry of \(x \) having the largest absolute value. Since \((ABCx)_i = \sqrt{2r - 2}x_i \), we have \(\sum_{v_j \in N(v_i)} x_j = \sqrt{2r - 2}x_i \), where the summation runs over the \(r \) vertices \(v_i \) adjacent to \(v_j \). It is not difficult to see that \(x_i = x_j \) for all these vertices. If \(G \) is a connected graph, we may proceed successively in this way, and eventually show that
all the entries of \(x \) are equal. Thus \(x \) is a multiple of \(u \) and the space of the eigenvectors associated with the eigenvalue \(\sqrt{2r-2} \) has a dimension one.

(iii) Suppose \(ABCy = \nu y, y \neq 0 \), and let \(y_i \) denote an entry of \(y \) which is the largest in absolute value. By the same argument as in (ii), we have \(\sum_{j \in N(v_i)} y_j = \nu y_i \), and so

\[
|\nu||y_j| = \left| \sum_{j \in N(v_i)} y_j \right| \leq \sum_{j \in N(v_i)} |y_i| \leq \sqrt{2r-2}|y_i|.
\]

Thus \(|\nu| \leq \sqrt{2r-2} \), as required. \(\Box \)

In what follows, by \(mG \) we mean the union of \(m \) copies of \(G \), namely \(G \cup \cdots \cup G \) \(m \) times.

A Rayleigh quotient for the \(ABC \) matrix is a scalar of the form \(\frac{x^T ABC x}{x^T x} \) where \(x \) is a non-zero vector in \(\mathbb{R}^n \). The supremum of the set of such scalars is the largest eigenvalue \(\nu_1(G) \) of \(ABC \), or equivalently,

\[
\nu_1(G) = \sup_{x \neq 0} \frac{x^T ABC x}{x^T x} = \sup_{x \neq 0} \frac{2}{\sum_{u \in V(G)} x_u^2} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}}.
\]

If \(x_u = \sqrt{d_u} \), then we have

\[
\nu_1(G) \geq \frac{1}{m} \sum_{uv \in E(G)} \sqrt{d_u + d_v - 2} \geq \frac{1}{m} \sqrt{\sum_{uv \in E(G)} (d_u + d_v - 2)} = \frac{1}{m} \sqrt{M_1(G) - 2m},
\]

where \(M_1(G) \) is the first Zagreb index. If \(x_u = d_u \), then we have

\[
\nu_1(G) \geq \frac{2}{M_1(G)} \sum_{uv \in E(G)} \sqrt{(d_u + d_v - 2)d_u d_v},
\]

and by using Theorem 2.3, equality holds if \(G \) is regular. By [3, Lemma 3.10], if \(G \) is a graph of order \(n \geq 3 \) with no isolated vertex, then we have

\[
\nu_1(G) \geq \sqrt{\frac{2}{n} (n - 2R_{-1}(G))},
\]

with equality if and only if \(n \) is even and \(G = (\frac{n}{2})K_2 \).
Theorem 2.4. A lower bound for the ABC spectral radius of a connected graph G with $n \geq 3$ vertices is

$$\nu_1(G) \geq \sqrt{2} \cos \frac{\pi}{n+1},$$

and equality holds for the path P_n.

Proof. If $\Delta = 2$, then $G \in \{P_n, C_n\}$ and we have $\nu_1(P_n) = \sqrt{2} \cos \frac{\pi}{n+1} < \sqrt{2} = \nu_1(C_n)$, and the equality holds for the path P_n. We will prove that for any graph G with $\Delta \geq 3$, $\nu_1(G) \geq \sqrt{2}$. By Lemma 2.1, if we find a vector $x > 0$ such that $ABCx \geq \sqrt{2}x$, then $\nu_1(G) \geq \sqrt{2}$. We consider the following cases:

Case 1: $\delta \geq 2$. Set $x_i = \sqrt{d_i}$. Therefore, we obtain

$$(ABCx)_i = \sum_{v_j \in N(v_i)} \sqrt{\frac{d_i + d_j - 2}{d_id_j}} \geq d_i \geq \sqrt{2} \sqrt{d_i} = \sqrt{2}x_i.$$

So we have $ABCx \geq \sqrt{2}x$.

Case 2: $\delta = 1$. We delete all pendent edges from G until there is no pendent edge, and we delete isolated vertices and get a graph G'.

Subcase 2.1: G' is an empty graph, that is to say, G is a tree. Choose a vertex v such that $d_v = \Delta$ as the root of the tree. Let $P = v_1v_2 \ldots v_l(v_l = v)$ be a longest path of length $l - 1$ ending at v. If $l = 2$, then $G = S_n$, and $\nu_1(S_n) = \sqrt{n - 2} \geq \sqrt{2}$. So we assume $l \geq 3$. Set $x_{v_i} = i, 1 \leq i \leq l$. Then for any given assigned root vertex v with value x_v, and a longest assigned path P, we give an algorithm to assign values to other vertices.

Step 1: For all $u \in N(v)$ and $d_u = 1$, set $x_u = \sqrt{\frac{d_u - 2}{\Delta}x_v}$.

Step 2: For all unassigned vertices $u \in N(v)$ and $d_u \geq 2$, find a longest path $P = u_1u_2 \ldots u_kv(u_k = u, k \geq 2)$ ending at v, and set $x_{u_i} = \frac{i}{k+1}x_v(1 \leq i \leq k)$.

Step 3: If there is a vertex u_i with $d_{u_i} \geq 3$, take u_i as an assigned root vertex and choose the longest assigned path ending at u_i.

Repeat above procedure until all vertices have their values. Fig. 1 is an example of how this algorithm is implemented. We have

$$\sqrt{\frac{d_v - 1}{d_v}}x_v \geq \frac{2}{3}x_v \geq \frac{1}{2}x_v \geq \frac{2}{3}x_v \cdot \sqrt{\frac{2\Delta - 2}{\Delta^2}},$$

for $x_v \geq 3$ and $d_v \geq 3$. Then for the rooted vertex v, we have

$$(ABCx)_v \geq \Delta \left(\frac{2}{3}x_v \cdot \sqrt{\frac{2\Delta - 2}{\Delta^2}}\right) = \sqrt{2} \cdot \frac{2}{3}x_v \cdot \sqrt{\Delta - 1} \geq \sqrt{2}x_v,$$
where $\Delta \geq 4$.

Now we assume $\Delta = 3$. For the rooted vertex v, there is actually a neighbor with value $x_v - 1$. So for the other two neighbors u_1, u_2, we assume that $d_{u_1} \leq d_{u_2}$. If $1 = d_{u_1} = d_{u_2}$, then we have

$$(ABCx)_v = 2 \cdot \frac{\sqrt{2}}{3} x_v + \frac{2}{3} (x_v - 1) > \sqrt{2} x_v,$$

for $x_v \geq 4$; if $1 = d_{u_1} < d_{u_2} \leq 3$, then

$$(ABCx)_v \geq \frac{\sqrt{2}}{3} x_v + \frac{2}{3} \cdot \frac{2}{3} x_v + \frac{2}{3} (x_v - 1) > \sqrt{2} x_v,$$

for $x_v \geq 4$; if $2 \leq d_{u_1} \leq d_{u_2} \leq 3$, then

$$(ABCx)_v \geq 2 \cdot \frac{2}{3} \cdot \frac{2}{3} x_v + \frac{2}{3} (x_v - 1) > \sqrt{2} x_v,$$

for $x_v \geq 5$. For $\Delta = 3$, $3 \leq x_v \leq 4$, we list all such graphs in Appendix B (Tables 2, 3), it is easy to see that $\nu_1(G) \geq \sqrt{2}$, and so we choose the eigenvector corresponding to the spectral radius as x. In conclusion, $(ABCx)_v \geq \sqrt{2} x_v$.

Therefore, we verified that for the root vertex v, $(ABCx)_v \geq \sqrt{2} x_v$. Next, we consider other vertices. For vertices with degree 1 and 2, by its definition, $ABCx_u \geq \sqrt{2} x_u$. For vertices with degree 3, there is actually a neighbor with value at least $x_u + 1$. So for the other two neighbors u_1, u_2, we assume that $d_{u_1} \leq d_{u_2}$. If $1 = d_{u_1} = d_{u_2}$, then we have

$$(ABCx)_u = 2 \cdot \frac{\sqrt{2}}{3} x_u + \frac{2}{3} (x_u + 1) > \sqrt{2} x_u,$$

for $x_u \geq 1$; if $1 = d_{u_1} < d_{u_2} \leq 3$, then

$$(ABCx)_u \geq \frac{\sqrt{2}}{3} x_u + \frac{2}{3} \cdot \frac{2}{3} x_u + \frac{2}{3} (x_u + 1) > \sqrt{2} x_u,$$
for $x_u \geq 1$; if $2 \leq d_{u_1} \leq d_{u_2} \leq 3$, then

$$(ABCx)_u \geq 2 \cdot \frac{2}{3} \cdot \frac{2}{3} x_u + \frac{2}{3} (x_u + 1) > \sqrt{2} x_u,$$

for $x_u \geq 1$. Then we have $(ABCx)_u \geq \sqrt{2} x_u$. For vertices with degree at least 4, verification of $(ABCx)_u \geq \sqrt{2} x_u$ holding is similar to the rooted vertex. Then we have that for any vertex $v \in G$, $(ABCx)_v \geq \sqrt{2} x_v$. So we have $ABCx \geq \sqrt{2} x$.

Subcase 2.2: G' is not an empty graph, that is to say, $\delta(G') \geq 2$.

In this case, we can consider G as attaching some trees to the vertices in G'. Recall that the degree of v in G is denoted by d_v. First, for any vertex v in G', we choose the longest path P_{x_v} in $G \setminus G'$ ending at v, and determinate $t = \max\{x_v/\sqrt{d_v}, v \in G'\}$. Set $x_i = t\sqrt{d_i}$ for all vertices in G'. Then use the algorithm in Subcase 2.1 to assign all the vertices in the unassigned trees. It is easy to see that the process of verifying each vertices in G' that attached no tree is the same as Case 1, and vertices in $V(G) \setminus V(G')$ is the same as Subcase 2.1. For all the remaining vertices, let $d = d_v(G) - d_v(G') \leq d_v(G) - 2$, $d_1 = \max\{d_u : u \in V(G) - V(G'), u \in N(v)\}, d_2 = \min\{d_u : u \in G', u \in N(v)\}$. By Case 1 and Subcase 2.1, we have that

$$(ABCx)_v \geq d \cdot \frac{2}{3} t\sqrt{d_v} \cdot \sqrt{\frac{d_v + d_1 - 2}{d_v d_2}} + (d_v - d) \cdot t\sqrt{d_2} \cdot \sqrt{\frac{d_v + d_2 - 2}{d_v d_2}}$$

$$(\geq t(\frac{2}{3} d + d_v - d)) \geq t(\frac{2}{3} d_v + \frac{2}{3}) \geq \sqrt{2} \cdot t\sqrt{d_v} = \sqrt{2} x_v,$$

for $d_v \geq 2$. Hence, we have $(ABCx)_v \geq \sqrt{2} x_v$.

In conclusion, since we found a vector $x > 0$ such that $ABCx \geq \sqrt{2} x$, for any G with $\Delta \geq 3$, then $\nu_1(G) \geq \sqrt{2}$ holds. □

Conjecture 2.1. Let G be a unicyclic graph of order $n \geq 4$. Then

$$\sqrt{2} = \nu_1(C_n) \leq \nu_1(G) \leq \nu_1(S_n + e),$$

with equality if and only if $G \cong C_n$ for the lower bound, and if and only if $G \cong S_n + e$ for the upper bound.

3. **Bounds for the ABC energy E_{ABC} of graphs**

The aim of this section is to find some bounds on the ABC energy of graphs. At first, by using the methods of Estrada et al. as given in [5], we can obtain the following formula for the ABC energy of a graph. As usual, the binomial coefficients are defined by $\binom{n}{r} = \frac{n(n-1)\cdots(n-r+1)}{r!}$, where $n \geq r$.

\textbf{Theorem 3.1.} Let G be a connected graphs of order $n \geq 3$. Then

$$E_{ABC}(G) = \nu_1 \text{tr} \sum_{i=0}^{\infty} \left(\frac{1}{2i} \right) \left(\frac{ABC}{\nu_1} \right)^{2i}.$$ \hspace{1cm} (3)

\textbf{Proof.} Let G be a connected graph. Suppose that ABC matrix of G is a square, symmetric matrix with spectral decomposition $ABC = QDQ^T$, where $Q = [\psi_1 \cdots \psi_n]$ is the matrix of orthonormalized eigenvectors ψ_j associated with the eigenvalues ν_j, and $D = \text{diag}(\nu_1, \ldots, \nu_n)$. Since every symmetric positive semidefinite matrix has a unique positive semidefinite square root, we yield that $|ABC| = Q|D|Q^T = \sqrt{ABC^2}$.

Let $\nu_1 > 0$ be the largest eigenvalue of ABC. We note in passing that since G is connected, ν_1 is a simple eigenvalue. Then, $\frac{ABC}{\nu_1}$ has spectral radius 1, and the matrix $M = \left(\frac{ABC}{\nu_1} \right)^2 - I$ has all its eigenvalues in the interval $[-1, 0]$. Hence, M is negative semidefinite and has spectral radius 1. Let us write

$$|ABC| = \sqrt{ABC^2} = \nu_1 \sqrt{\left(\frac{ABC}{\nu_1} \right)^2} = \nu_1 \sqrt{I + \left(\frac{ABC}{\nu_1} \right)^2 - I}$$

$$= \nu_1 (I + M)^{\frac{1}{2}}. \hspace{1cm} (4)$$

Since, for $-1 \leq x \leq 1$, we have

$$(1 + x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^3 + \cdots, \hspace{0.5cm} 0 \neq \alpha \in \mathbb{R},$$

Eq. (4) can be reformulated as follows:

$$|ABC| = \nu_1 \left(I + \frac{1}{2} M - \frac{1}{4 \cdot 2} M^2 + \frac{3}{2 \cdot 4 \cdot 6} M^3 + \cdots \right)$$

$$= \nu_1 \sum_{i=0}^{\infty} \left(\frac{1}{2i} \right) \left(\left(\frac{ABC}{\nu_1} \right)^2 - I \right)^i.$$

Therefore,

$$E_{ABC}(G) = \text{tr} |ABC| = \nu_1 \text{tr} \left[\sum_{i=0}^{\infty} \left(\frac{1}{2i} \right) \left(\left(\frac{ABC}{\nu_1} \right)^2 - I \right)^i \right]$$

$$= \nu_1 \text{tr} \sum_{i=0}^{\infty} \left(\frac{1}{2i} \right) \sum_{j=0}^{\infty} \left(\frac{i}{j} \right) (-1)^j \left(\frac{ABC}{\nu_1} \right)^{2j}. \hspace{1cm} \square$$

Equivalently, the Eq. (3), can be rewritten as follows:

$$E_{ABC}(G) = \nu_1 \sum_{i=0}^{\infty} \left(\frac{2i}{i} \right) \frac{(-1)^{i+1}}{2^{2i}(2i - 1)} \text{tr} \left(\left(\frac{ABC}{\nu_1} \right)^2 - I \right)^i. \hspace{1cm} (5)$$
Applying Eq. (5) yields some upper bounds for ABC energy of graphs as follows.

Theorem 3.2. Let G be a connected graph. Then,

$$E_{ABC}(G) \leq \frac{n \nu_1}{2} + \frac{1}{\nu_1}(n - 2R_{-1}(G)).$$

Proof. By Eq. (5), we have

$$E_{ABC}(G) = \nu_1 \left[\text{tr}(I) + \frac{1}{2} \text{tr}\left(\frac{ABC^2}{\nu_1^2} - I \right) - \frac{1}{8} \text{tr}\left(\frac{ABC^2}{\nu_1^2} - I \right)^2 + \cdots \right],$$

which implies that

$$E_{ABC}(G) \leq \nu_1 \text{tr} \left[I + \frac{1}{2} \left(ABC^2 - I \right) \right]
= \nu_1 \left[\text{tr}(I) + \frac{1}{2\nu_1^2} \text{tr}(ABC^2) - \frac{1}{2} \text{tr}(I) \right]
= \nu_1 \left[\frac{n}{2} + \frac{1}{2\nu_1^2}(2n - 4R_{-1}(G)) \right]
= \frac{n \nu_1}{2} + \frac{1}{\nu_1}(n - 2R_{-1}(G)),$$

where $\text{tr}(ABC^2) = \sum_{i=1}^{n} \nu_i^2$. This yields the result. \square

Lemma 3.1. [2] Let G be a connected graph on $n \geq 3$ vertices. Then

$$R_{-1}(G) \leq \frac{15}{56}(n + 1).$$

(6)

Theorem 3.3. Let G be a connected graph on $n \geq 3$ vertices. Then,

$$E_{ABC}(G) \leq \frac{n}{2} \sqrt{2n - 4} + \frac{13n - 15}{28}.$$

Proof. By Eqs. (1), (2), (5) and (6), we obtain

$$E_{ABC}(G) \leq \frac{n}{2} \sqrt{2n - 4} + \frac{1}{\sqrt{2} \cos \frac{\pi}{n+1}} \left(n - \frac{15}{28}(n + 1) \right).$$

It is clear that $\frac{1}{\sqrt{2} \cos \frac{\pi}{n+1}} \leq 1$ and thus

$$E_{ABC}(G) \leq \frac{n}{2} \sqrt{2n - 4} + \frac{13n - 15}{28},$$

proving the result. \square
Theorem 3.4. Let G be a graph of order $n \geq 3$ with no isolated vertex and with ABC eigenvalues $\nu_1 \geq \nu_2 \geq \cdots \geq \nu_n$. Then

1) $E_{ABC}(G) \geq \sqrt{2n(n-2R_{-1}(G)) - \frac{n^2}{4} (|\nu_1| - |\nu_{\text{min}}|)^2}$,

2) $E_{ABC}(G) \geq \frac{2\sqrt{2n|\nu_1||\nu_{\text{min}}|(n-2R_{-1}(G))}}{|\nu_1|+|\nu_{\text{min}}|}$, where $\nu_i \neq 0$ ($1 \leq i \leq n$),

where $|\nu_{\text{min}}| = \min\{|\nu_2|, |\nu_3|, \ldots, |\nu_n|\}$.

Proof. We may assume $n \geq 3$. The Ozeki's inequality [9] states that if a_i and b_i, ($1 \leq i \leq n$), are non-negative real numbers, then

$$\sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2 - \left(\sum_{i=1}^{n} a_i^2 b_i \right)^2 \leq \frac{n^2}{4} (M_1 M_2 - m_1 m_2)^2,$$

where $0 \leq m_1 \leq a_i \leq M_1$ and $0 \leq m_2 \leq b_i \leq M_2$, ($1 \leq i \leq n$). Applying this inequality by substituting $a_i = 1$ and $b_i = |\nu_i|$ ($1 \leq i \leq n$), we thus get

$$n \sum_{i=1}^{n} |\nu_i|^2 - \left(\sum_{i=1}^{n} |\nu_i| \right)^2 \leq \frac{n^2}{4} (|\nu_1| - |\nu_{\text{min}}|)^2,$$

where $|\nu_{\text{min}}| = \min\{|\nu_2|, |\nu_3|, \ldots, |\nu_n|\}$. From Lemma 1.1, one can easily see that

$$E_{ABC}(G) \geq \sqrt{2n(n-2R_{-1}(G)) - \frac{n^2}{4} (|\nu_1| - |\nu_{\text{min}}|)^2}.$$

This completes the proof of the first claim. The proof of the second claim is by Poly-
Szegö inequality [8], i.e., if a_i, b_i, M_i, m_i, $1 \leq i \leq n$, are as defined above, then we obtain

$$\sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2 \leq \frac{1}{4} \left(\sqrt{\frac{M_1 M_2}{m_1 m_2}} + \sqrt{\frac{m_1 m_2}{M_1 M_2}} \right)^2 \left(\sum_{i=1}^{n} a_i b_i \right)^2.$$

Suppose $a_i = 1$ and $b_i = |\nu_i|$, where $\nu_i \neq 0$ ($1 \leq i \leq n$). Then

$$n \sum_{i=1}^{n} |\nu_i|^2 \leq \frac{1}{4} \left(\sqrt{\frac{|\nu_{\text{min}}|}{|\nu_1|}} + \sqrt{\frac{|\nu_1|}{|\nu_{\text{min}}|}} \right)^2 \left(\sum_{i=1}^{n} |\nu_i| \right)^2$$

and

$$8n(n-2R_{-1}(G)) \leq E_{ABC}(G) \left(\sqrt{\frac{|\nu_{\text{min}}|}{|\nu_1|}} + \sqrt{\frac{|\nu_1|}{|\nu_{\text{min}}|}} \right)^2.$$
Thus

$$E_{ABC}(G) \geq \frac{2\sqrt{2n|\nu_1||\nu_{\text{min}}|(n - 2R_1(G))}}{|\nu_1| + |\nu_{\text{min}}|}. $$

This completes the proof of second claim. □

Corollary 3.1. Let G be an r-regular graph of order $n \geq 3$ with no isolated vertex and with ABC eigenvalues $\nu_1 \geq \nu_2 \geq \cdots \geq \nu_n$, where $|\nu_{\text{min}}| = \min\{|\nu_2|, |\nu_3|, \ldots, |\nu_n|\}$. Then

1) $E_{ABC}(G) \geq \sqrt{2n(n - 2R_1(G)) - \frac{n^2}{4} \left(\sqrt{2r - 2} - |\nu_{\text{min}}| \right)^2},$

2) $E_{ABC}(G) \geq \frac{2\sqrt{2n\sqrt{2r - 2(n - 2R_1(G))}|\nu_{\text{min}}|}}{\sqrt{2r - 2 + |\nu_{\text{min}}|}},$ where $\nu_i \neq 0$ (1 ≤ i ≤ n).

Proof. Theorem 2.3 implies that $\nu_1 = \sqrt{2r - 2}$. Then by Theorem 3.4, it is not difficult to see above results. □

Theorem 3.5. Let G be a graph of order $n \geq 3$ with no isolated vertex. Then

$$E_{ABC}(G) \geq \sqrt{2(n - 2R_1(G)) + \left(\frac{n}{2} \right) \left(\det(ABC) \right)^{\frac{2}{n}}}. $$

Proof. Applying Geometric-Arithmetic mean inequality yields that

$$\left(\sum_{i=1}^{n} |\nu_i| \right)^2 = \sum_{i=1}^{n} |\nu_i|^2 + \sum_{1 \leq i, j \leq n} |\nu_i||\nu_j|$$

$$\geq 2(n - 2R_1(G)) + n(n - 1) \left(\prod_{1 \leq i, j \leq n, i \neq j} |\nu_i||\nu_j| \right)^{\frac{1}{n(n-1)}}$$

$$= 2(n - 2R_1(G)) + 2 \left(\frac{n}{2} \right) \left(\prod_{i=1}^{n} \nu_i \right)^{2(n-1)}^{\frac{1}{n(n-1)}}$$

$$= 2(n - 2R_1(G)) + 2 \left(\frac{n}{2} \right) \left(\prod_{i=1}^{n} \nu_i \right)^{2 \frac{1}{n}}$$

$$= 2(n - 2R_1(G)) + 2 \left(\frac{n}{2} \right) \left(\det(ABC) \right)^{\frac{2}{n}}.$$

Since $E_{ABC}(G) = \sum_{i=1}^{n} |\nu_i|$, we get

$$E_{ABC}(G) \geq \sqrt{2(n - 2R_1(G)) + 2 \left(\frac{n}{2} \right) \left(\det(ABC) \right)^{\frac{2}{n}}}.$$
Table 1
The correlation between the ABC Energy and $E_A, E_R, E_L, E_S, E_L, E_Q$.

<table>
<thead>
<tr>
<th>n</th>
<th>Num</th>
<th>E_A</th>
<th>E_R, E_L</th>
<th>E_S</th>
<th>E_L, E_Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0.93</td>
<td>0.92</td>
<td>0.97</td>
<td>-0.59</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.96</td>
<td>0.96</td>
<td>0.93</td>
<td>-0.68</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>0.95</td>
<td>0.94</td>
<td>0.89</td>
<td>-0.67</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>0.95</td>
<td>0.94</td>
<td>0.90</td>
<td>-0.68</td>
</tr>
<tr>
<td>9</td>
<td>47</td>
<td>0.95</td>
<td>0.93</td>
<td>0.88</td>
<td>-0.67</td>
</tr>
<tr>
<td>10</td>
<td>106</td>
<td>0.94</td>
<td>0.92</td>
<td>0.87</td>
<td>-0.67</td>
</tr>
<tr>
<td>11</td>
<td>235</td>
<td>0.94</td>
<td>0.92</td>
<td>0.86</td>
<td>-0.67</td>
</tr>
<tr>
<td>12</td>
<td>551</td>
<td>0.94</td>
<td>0.91</td>
<td>0.85</td>
<td>-0.67</td>
</tr>
<tr>
<td>13</td>
<td>1301</td>
<td>0.94</td>
<td>0.91</td>
<td>0.84</td>
<td>-0.67</td>
</tr>
<tr>
<td>14</td>
<td>3159</td>
<td>0.94</td>
<td>0.91</td>
<td>0.84</td>
<td>-0.67</td>
</tr>
<tr>
<td>15</td>
<td>7741</td>
<td>0.94</td>
<td>0.90</td>
<td>0.83</td>
<td>-0.67</td>
</tr>
<tr>
<td>16</td>
<td>19320</td>
<td>0.93</td>
<td>0.90</td>
<td>0.82</td>
<td>-0.68</td>
</tr>
<tr>
<td>17</td>
<td>48629</td>
<td>0.93</td>
<td>0.90</td>
<td>0.82</td>
<td>-0.68</td>
</tr>
<tr>
<td>18</td>
<td>123867</td>
<td>0.93</td>
<td>0.90</td>
<td>0.82</td>
<td>-0.68</td>
</tr>
</tbody>
</table>

This completes the proof. □

4. Correlation between ABC energy and other classes of graph energy

The symmetric $(0, -1, 1)$-adjacency matrix $S(G) = J - I - 2A(G)$ is called the Seidel matrix of G, where J is the matrix with entries 1 in every position. The Seidel energy $E_S(G)$ is the sum of absolute values of the eigenvalues of $S(G)$. As usual, $L(G) = D(G) - A(G)$ and $Q(G) = D(G) + A(G)$ are the Laplacian and signless Laplacian matrices of a graph G, respectively, where $D(G) = [d_{ij}]$ is the diagonal matrix with entries equal to the degree of vertices of G, namely, $d_{ii} = d_i$, and $d_{ij} = 0$ for $i \neq j$. If $\mu_1 \geq \cdots \geq \mu_n \geq 0, q_1 \geq q_2 \geq \cdots \geq q_n$ are the Laplacian and the signless Laplacian eigenvalues of G, then the quantities $E_L(G) = \sum_{i=1}^{n} |\mu_i - 2m/n|$ and $E_Q(G) = \sum_{i=1}^{n} |q_i - 2m/n|$ are called the Laplacian and the signless Laplacian energies of G, respectively. The normalized Laplacian matrix of G is defined as $L = D(G)^{-\frac{1}{2}}LD(G)^{-\frac{1}{2}}$. Then $E_L(G) = \sum_{i=1}^{n} |\delta_i - 1|$ is called normalized Laplacian energy of G, where δ_i’s are the normalized Laplacian eigenvalues of G.

In [3], Chen conjectured that among all trees of order n, the star graph S_n has the minimum ABC energy and Gao et al. in [6] proved this conjecture. In the following, we investigate correlations between the ABC energy and other classes of energy such as adjacency energy, normalized Laplacian energy, Randić energy, Seidel energy, Laplacian and signless Laplacian energy among all trees up to 18 vertices. These values are reported in Table 1. Also, in Appendix A one can see that among all trees up to 18 vertices, the star graph has the minimum ABC energy. The values of $E_{ABC}(S_n)$ are colored by red, see Fig. 2.

Declaration of competing interest

The authors declare no conflict of interest.
Appendix A

Fig. 2. The E_{ABC} of trees on $6 \leq n \leq 18$ vertices versus the respective E_A, E_R, E_S, E_L.
Fig. 2. (continued)
Fig. 2. (continued)
Appendix B. Tables 2, 3

Table 2
Graphs with $\Delta = 3$, $x_v = 3$.

<table>
<thead>
<tr>
<th>G</th>
<th>$\nu_1(G)$</th>
<th>G</th>
<th>$\nu_1(G)$</th>
<th>G</th>
<th>$\nu_1(G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sqrt{2}$</td>
<td></td>
<td>1.53518</td>
<td></td>
<td>1.59335</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{2}$</td>
<td></td>
<td>1.52884</td>
<td></td>
<td>1.58603</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{2}$</td>
<td></td>
<td>1.52311</td>
<td></td>
<td>1.63299</td>
</tr>
</tbody>
</table>

Table 3
Graphs with $\Delta = 3$, $x_v = 4$.

<table>
<thead>
<tr>
<th>G</th>
<th>$\nu_1(G)$</th>
<th>G</th>
<th>$\nu_1(G)$</th>
<th>G</th>
<th>$\nu_1(G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.43789</td>
<td></td>
<td>1.52753</td>
<td></td>
<td>1.43600</td>
</tr>
<tr>
<td></td>
<td>1.52280</td>
<td></td>
<td>1.45433</td>
<td></td>
<td>1.53074</td>
</tr>
<tr>
<td></td>
<td>1.56908</td>
<td></td>
<td>1.43438</td>
<td></td>
<td>1.51852</td>
</tr>
<tr>
<td></td>
<td>1.45161</td>
<td></td>
<td>1.52753</td>
<td></td>
<td>1.46676</td>
</tr>
<tr>
<td></td>
<td>1.56378</td>
<td></td>
<td>1.53360</td>
<td></td>
<td>1.56966</td>
</tr>
<tr>
<td></td>
<td>1.59643</td>
<td></td>
<td>1.52295</td>
<td></td>
<td>1.53856</td>
</tr>
<tr>
<td></td>
<td>1.58769</td>
<td></td>
<td>1.51761</td>
<td></td>
<td>1.53265</td>
</tr>
<tr>
<td></td>
<td>1.58020</td>
<td></td>
<td>1.58064</td>
<td></td>
<td>1.59281</td>
</tr>
<tr>
<td></td>
<td>1.52727</td>
<td></td>
<td>1.57508</td>
<td></td>
<td>1.62797</td>
</tr>
<tr>
<td></td>
<td>1.58581</td>
<td></td>
<td>1.61550</td>
<td></td>
<td>1.57040</td>
</tr>
<tr>
<td></td>
<td>1.63135</td>
<td></td>
<td>1.60920</td>
<td></td>
<td>1.64582</td>
</tr>
<tr>
<td>G</td>
<td>$\nu_1(G)$</td>
<td>G</td>
<td>$\nu_1(G)$</td>
<td>G</td>
<td>$\nu_1(G)$</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>-------</td>
<td>------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>1.62692</td>
<td>1.58247</td>
<td>1.58211</td>
<td></td>
<td>1.62039</td>
<td>1.62251</td>
</tr>
<tr>
<td>1.65528</td>
<td>1.61600</td>
<td>1.64840</td>
<td></td>
<td>1.61847</td>
<td>1.57194</td>
</tr>
<tr>
<td>1.64299</td>
<td>1.61199</td>
<td>1.66946</td>
<td></td>
<td>1.64856</td>
<td>1.63755</td>
</tr>
<tr>
<td>1.68470</td>
<td>1.53254</td>
<td>1.51263</td>
<td></td>
<td>1.52700</td>
<td>1.57392</td>
</tr>
<tr>
<td>1.57568</td>
<td>1.58741</td>
<td>1.52197</td>
<td></td>
<td>1.56908</td>
<td>1.53591</td>
</tr>
<tr>
<td>1.62333</td>
<td>1.58066</td>
<td>1.60967</td>
<td></td>
<td>1.59232</td>
<td>1.56466</td>
</tr>
<tr>
<td>1.57539</td>
<td>1.60753</td>
<td>1.62657</td>
<td></td>
<td>1.60358</td>
<td>1.58562</td>
</tr>
<tr>
<td>1.57096</td>
<td>1.60303</td>
<td>1.64060</td>
<td></td>
<td>1.62983</td>
<td>1.60808</td>
</tr>
<tr>
<td>1.59891</td>
<td>1.64383</td>
<td>1.62743</td>
<td></td>
<td>1.65716</td>
<td>1.59266</td>
</tr>
<tr>
<td>1.58731</td>
<td>1.61978</td>
<td>1.61405</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>$\nu_1(G)$</td>
<td>G</td>
<td>$\nu_1(G)$</td>
<td>G</td>
<td>$\nu_1(G)$</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>1.61619</td>
<td>1.57046</td>
<td>1.62500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.58240</td>
<td>1.58205</td>
<td>1.61498</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.64950</td>
<td>1.60988</td>
<td>1.64214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.61236</td>
<td>1.56568</td>
<td>1.61874</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.62079</td>
<td>1.57721</td>
<td>1.64382</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.61057</td>
<td>1.61024</td>
<td>1.64617</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.63691</td>
<td>1.60608</td>
<td>1.65286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.61455</td>
<td>1.64596</td>
<td>1.61694</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.57245</td>
<td>1.63812</td>
<td>1.63976</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.60589</td>
<td>1.66369</td>
<td>1.64314</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.63164</td>
<td>1.64950</td>
<td>1.64075</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.61072</td>
<td>1.66637</td>
<td>1.63408</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.66117</td>
<td>1.63604</td>
<td>1.60159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.65946</td>
<td>1.66677</td>
<td>1.64644</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.63551</td>
<td>1.66299</td>
<td>1.65626</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.63038</td>
<td>1.67914</td>
<td>1.66253</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.67881</td>
<td>1.65990</td>
<td>1.65132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.68185</td>
<td>1.67466</td>
<td>1.69220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.62298</td>
<td>1.65104</td>
<td>1.61838</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 (continued)

<table>
<thead>
<tr>
<th>G</th>
<th>$\nu_1(G)$</th>
<th>G</th>
<th>$\nu_1(G)$</th>
<th>G</th>
<th>$\nu_1(G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.61803</td>
<td>1.67609</td>
<td>1.64527</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.67161</td>
<td>1.64716</td>
<td>1.61382</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.64686</td>
<td>1.61347</td>
<td>1.67255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.66662</td>
<td>1.64138</td>
<td>1.64108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.66780</td>
<td>1.64301</td>
<td>1.60896</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.68803</td>
<td>1.66930</td>
<td>1.66159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.66905</td>
<td>1.66283</td>
<td>1.63725</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.68470</td>
<td>1.66431</td>
<td>1.63921</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.60448</td>
<td>1.68379</td>
<td>1.68469</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.66586</td>
<td>1.65781</td>
<td>1.68021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.65935</td>
<td>1.63345</td>
<td>1.70071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.68047</td>
<td>1.69831</td>
<td>1.68163</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.66271</td>
<td>1.67570</td>
<td>1.65436</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.69763</td>
<td>1.69435</td>
<td>1.67744</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.67118</td>
<td>1.70931</td>
<td>1.69482</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.69039</td>
<td>1.70569</td>
<td>1.71862</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References
