Preliminary report

Subantibiotic dose of azithromycin attenuates alveolar bone destruction and improves trabecular microarchitectures in a rat model of experimental periodontitis: A study using micro-computed tomography

Hye-Shin Park⁹, Yong Sun Lee⁹, Eun-Young Choi⁵, Jeom-Il Choi⁵, In Soon Choi⁵, Sung-Jo Kim⁵,⁶,⁷,⁸

¹ Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
² Department of Biological Science, College of Medical and Life Sciences, Silla University, Busan, Republic of Korea
³ Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Gyeongsangnam-do, Republic of Korea
⁴ Institute of Translational Dental Sciences, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea

ARTICLE INFO

Keywords:
Azithromycin
Host modulation
Experimental periodontitis
Alveolar bone
Micro-computed tomography

ABSTRACT

Azithromycin, a macrolide antibiotic, has anti-inflammatory and immunomodulatory activities apart from its antibacterial properties. In this study, we examined the efficacy of subantibiotic dose of azithromycin on ligation-induced periodontitis in rats using micro-computed tomography (micro-CT) imaging and bone parameter analysis. Male Sprague-Dawley rats were allocated to the following four groups: non-ligation (NL) group; ligation-only (L) group; ligation-plus-subantibiotic dose azithromycin (SA) group; and 4) ligation-plus-antibiotic dose azithromycin (AA) group. The rats from Groups L, SA and AA were subjected to periodontitis by placing a ligature around lower right first molar. Immediately after ligation, the rats in SA and AA groups received daily intraperitoneal injections of azithromycin at a dosage of 3.5 or 10 mg/kg body weight, respectively. The ligatures were maintained for 2 weeks at which time the rats had their mandibles hemisected for micro-CT analysis. Subantibiotic dose of azithromycin strongly suppressed reductions in alveolar bone height and bone volume fraction caused by experimental periodontitis. When subantibiotic dosage of azithromycin was administered to rats, ligation-induced alterations in microarchitectural parameters of trabecular bone were significantly reversed. Rats treated with subantibiotic dose of azithromycin presented no significant difference compared to rats with antibiotic dosage in all parameters. While further studies are necessary, subantibiotic dose of azithromycin could be utilized as a host modulator for the treatment of periodontitis.

1. Introduction

Periodontal disease, a chronic inflammatory disorder that occurs within the tissues supporting the teeth, is induced by some gram-negative anaerobic bacterial species that reside in the subgingival area. The inflammatory response of host to periodontal pathogenic bacteria and their products is characterized by an excessive and sustained production of proinflammatory mediators by the cells of the periodontium [1,2], and these mediators ultimately causes tissue destruction in periodontal disease [3–5]. Accordingly, the treatment approach aiming at these destructive mediators may be of great importance in the management of periodontal disease [6].

Macrolide antibiotics have been reported to be effective against various gram-positive and specific gram-negative bacteria [7]. It is well known that macrolides have a variety of unique biological activities apart from antimicrobial properties, including anti-inflammatory and immunomodulatory characteristics observed both in vivo and in vitro [8,9]. The anti-inflammatory effectiveness of macrolides seemed to be attributed to their suppressive activity on the generation of proinflammatory mediators in various type of cells [10,11].

Azithromycin, a macrolide antibiotic with a 15-atom lactone ring, possesses enhanced antimicrobial property against gram-negative bacteria [12]. There is substantial evidence to support the supplementary use of azithromycin in the therapy of periodontitis [13,14]. In addition, azithromycin also has notable anti-inflammatory and immunomodulatory activities like conventional macrolides due to its suppressive influences on proinflammatory cytokine release by inflammatory cells [15].
We have previously shown that azithromycin significantly attenuates the generation of IL-6 in macrophages stimulated with LPS isolated from Prevotella intermedia, a pathogen related to periodontal disease, implying that it may have possible application as a host response modulator in the treatment of inflammatory periodontal disease [16]. Therefore, this study aimed to assess the influence of subantibiotic dosage of azithromycin on alveolar bone destruction in rats with experimental periodontitis by employing micro-computed tomography (micro-CT) imaging and bone parameter analysis.

2. Materials and methods

2.1. Animals

A total of 19 male Sprague-Dawley rats, 7-week of age and weighing 200–220 g, were subjected to experimental periodontitis. The rats were allocated randomly to one of the following four treatment groups: non-ligation (NL) group (n = 5); ligation-only (L) group (n = 4); ligation-plus-subantibiotic dose azithromycin (SA) group (n = 4), in which 3.5 mg/kg body weight of azithromycin was administered; and 4) ligation-plus-antibiotic dose azithromycin (AA) group (n = 6), in which 10 mg/kg of azithromycin was administered. The rats in NL Group were not exposed to ligature-induced periodontitis and served as healthy control. The other rats from Groups L, SA and AA were subjected to experimental periodontitis. Experimental periodontitis was induced by locating a 4-0 silk suture around lower first molar on the right side of each rat, as described in our previously published study [17]. Immediately after ligation, the rats in SA and AA groups received daily intraperitoneal injections of azithromycin at a dosage of 3.5 or 10 mg/kg body weight, respectively, whereas animals in Groups NL and L were given same volume of vehicle solution. The ligatures were maintained for 2 weeks at which time all rats from each group were sacrificed and had their mandible hemisected and fixed in 10% neutral buffered formalin for micro-CT evaluation.

2.2. Experimental design

The rats were allocated randomly to one of the following four treatment groups: non-ligation (NL) group (n = 5); ligation-only (L) group (n = 4); ligation-plus-subantibiotic dose azithromycin (SA) group (n = 4), in which 3.5 mg/kg body weight of azithromycin was administered; and 4) ligation-plus-antibiotic dose azithromycin (AA) group (n = 6), in which 10 mg/kg of azithromycin was administered. The rats in NL Group were not exposed to ligature-induced periodontitis and served as healthy control. The other rats from Groups L, SA and AA were subjected to experimental periodontitis. Experimental periodontitis was induced by locating a 4-0 silk suture around lower first molar on the right side of each rat, as described in our previously published study [17]. Immediately after ligation, the rats in SA and AA groups received daily intraperitoneal injections of azithromycin at a dosage of 3.5 or 10 mg/kg body weight, respectively, whereas animals in Groups NL and L were given same volume of vehicle solution. The ligatures were maintained for 2 weeks at which time all rats from each group were sacrificed and had their mandible hemisected and fixed in 10% neutral buffered formalin for micro-CT evaluation.

2.3. Micro-computed tomography imaging

We employed a micro-CT system (inspeXio SMX-90CT; Shimadzu, Tokyo, Japan) to scan and image mandibular block specimens. Using appropriate analysis software (TRI/3D-BON; RATOC System Engineering, Tokyo, Japan), three-dimensional (3D) digitized images were produced for quantitative analysis of the alveolar bone, as described in our previously published study [17].

2.4. Linear measurements of alveolar bone loss

All scans were realigned so that both the scan axes and anatomical landmarks aligned uniformly. To determine the extent of alveolar bone height loss, measurements were obtained from the cemento-enamel junction to the crest of alveolar bone on 3D digitized micro-CT images at 4 specific points in the interproximal region between the mandibular first and second molars, according to our previously published method [17].

2.5. Volumetric analysis

Volumetric measurements of the alveolar bone were carried out following the creation of 3D regions of interest (ROI). The interproximal region between the first and second molars was defined as ROI, following the procedure proposed by Luan et al. [18], beginning coronally by a line drawn immediately below the furcation roofs of the first and second molars, then extending apically for 100 serial scan sections. 2D contours were outlined at even intervals (five data planes each) and the 3D ROI was generated by using the appropriate software (TRI/3D-BON) based on the resultant 2D contours. Bone volume fraction (BVF), the fractions of the residual bone volume (BV) versus total volume (TV) in the created ROI images, was determined with the help of an analysis software package (TRI/3D-BON).

2.6. Analysis of microarchitectural bone parameters

The following characteristics of trabecular microstructure, including trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), trabecular number (Tb.N), bone mineral density (BMD) and structure model index (SMI), were analyzed in the generated ROIs by using an analysis software (TRI/3D-BON). Tb.Th, Tb.Sp and Tb.N were used to determine the quantity, thickness and organization of trabecular bone. BMD, the volumetric mineral density in the ROI, is calculated with an internal reference in micro-CT units. SMI, which is defined as an important measure of trabecular quality, assesses the plate- versus rod-like properties of the bony trabecular [19].

2.7. Statistical analysis

All data were presented as means ± SEM. A software package program (SPSS 21.0; SPSS, Chicago, IL, USA) was utilized for the statistical analyses of data. The differences in bone parameters between the groups were evaluated by an analysis of variance (ANOVA) with Tukey post-hoc comparisons. A p value of <0.05 was set to indicate a statistically significant difference.

3. Results

3.1. Effect of azithromycin on alveolar bone height

The representative 3D micro-CT images from 2 week specimens are shown in Fig. 1. There was an apparent reduction in the alveolar bone height around the mandibular first molar in Group L (Fig. 1B) compared with Group NL (Fig. 1A) and Group SA treated with 3.5 mg/kg of azithromycin (Fig. 1C). Fig. 1D shows that for Group AA treated with 10 mg/kg of azithromycin, significant recovery of the alveolar bone height was noted compared with Group L (Fig. 1B). As Fig. 1 reveals, it is obvious that specimens from SA and AA groups displayed dramatic rebound of bone resorption induced by 2 weeks of ligature placement (Fig. 1C, D). Fig. 2 depicts a comparison of the linear distance between the CEJ and alveolar bone crest in the interproximal area between the lower first and second molars. The value for Group L was significantly increased compared with Group NL (p < 0.01), demonstrating that placement of ligature resulted in vertical alveolar bone resorption in the 14 days of experimental period (Fig. 2). Compared to Group L, the reduction of alveolar bone height was significantly recovered in Groups SA and AA (p < 0.05) (Fig. 2). Notably, bone loss that was induced by ligature was found to be decreased by 65% in Group SA and by 68% in Group AA. Group SA treated with 3.5 mg/kg of azithromycin presented no significant difference when compared with Group AA treated with 10 mg/kg of azithromycin.

3.2. Effect of azithromycin on residual bone volume fraction

The BVF measurement for Group L was significantly reduced than that for Group NL (p < 0.05) (Fig. 3). Group L experienced an average 24% decrease in the proportion of the ROI that is occupied by bony structure when compared to that for Group NL. The BVF value found in Group AA was significantly higher than that in Group L (p < 0.05) (Fig. 3). When rats were treated with subantibiotic and antibiotic doses of azithromycin, about 83% and 60% of the decrease in the BVF caused
by 14 days of ligature placement was regained, respectively. There was no significant difference in terms of BVF between Groups SA and AA treated with either 3.5 or 10 mg/kg of azithromycin.

3.3. Effect of azithromycin on microarchitectural parameters of trabecular bone

Two weeks of ligature placement induced notable alterations in the microarchitectural parameters of trabecular bone. SA and AA groups were associated with significantly increased Tb.Th (Fig. 4A), Tb.N (Fig. 4C) and BMD (Fig. 4D) values compared to Group L, whereas ligature-induced increases in Tb.Sp (Fig. 4B) and SMI (Fig. 4E) values found in Group L were significantly decreased in both azithromycin groups. As shown in Fig. 4, azithromycin administration recovered some of microarchitectural parameters to the level seen in the control rats. No significant difference could be found between Groups SA and AA in all the parameters assessed.

4. Discussion

A growing number of published reports indicate that, apart from their antibacterial properties, macrolide antibiotics possess a broad spectrum of pharmacological effects, such as anti-inflammatory and immunomodulatory activities [8,9]. Favorable clinical outcomes of low-dose and long-term macrolide therapy have been reported in patients with various chronic airway inflammatory diseases [20,21]. Azithromycin also has proven anti-inflammatory/immunomodulatory actions, and there is ample experimental and clinical evidence that
Fig. 4. Analysis of microstructural parameters of trabecular bone, including trabecular thickness (Tb.Th) (A), trabecular separation (Tb.Sp) (B), trabecular number (Tb.N) (C), bone mineral density (BMD) (D) and structure model index (SMI) (E), in the selected ROI images. See Materials and methods for further details. Data are means ± SEM from four to six rats per group. *p < 0.01 versus Group NL; †p < 0.05 versus Group NL; **p < 0.01 versus Group L; ††p < 0.01 versus Group L. NL, non-ligation group; L, ligation group; SA, ligation-plus-subantibiotic dose azithromycin group; AA, ligation-plus-antibiotic dose azithromycin group.
suggests that azithromycin is useful in the treatment of chronic inflammatory diseases, including cystic fibrosis [22], chronic obstructive pulmonary disease [23] and ulcerative colitis [24]. These properties of azithromycin could also be beneficial in attenuating the inflammatory component of plaque-induced periodontal disease. In this study, therefore, we examined the ability of subantibiotic dose of azithromycin to attenuate ligature-induced periodontitis in rats, in terms of alveolar bone loss.

Experimental periodontitis can be induced in a range of methods. In this study, we have induced periodontitis in rats by placement of silk ligature underneath the gingival margin for 2 weeks, as in our previous study [17]. This method of periodontitis induction is well-established and widely utilized to demonstrate the effects of putative therapeutic modulators of periodontal disease [25,26].

Micro-CT analysis has been introduced to analyze 3D digitized structures of hard tissues in a highly accurate way [27]. Periodontitis alters bone mass and trabecular microstructures. Micro-CT, thus, can be utilized to assess bone mass and trabecular microarchitecture by analyzing specific parameters in 3D, allowing for detailed monitoring of bony alterations that occur during periodontal disease.

The findings of current study demonstrate that subantibiotic dose of azithromycin strongly suppressed reductions of both alveolar bone height and BVF caused by experimental periodontitis. In addition, when subantibiotic dose of azithromycin was administered to rats, ligature-induced alterations in the microarchitectural characteristics of trabecular bone, including Tb.Th, Tb.Sp, Tb.N, BMD and SMI values, were significantly improved. These results indicated that 2 weeks of sub-antibiotic dose of azithromycin treatment impeded alveolar bone destruction in a rat model of experimental periodontitis. Rats treated with subantibiotic dose of azithromycin presented no significant difference when compared with rats treated with antibiotic dosage in all the parameters assessed.

The data on the microarchitecture of trabecular bone suggest that azithromycin caused bone formation on the surface of the trabecular bone, in the presence of experimental periodontitis, inducing the increases in Tb.Th and Tb.N and resultant decrease in Tb.Sp. The significantly lower SMI value, an important measure of trabecular quality, in rats of SA and AA Groups suggests that the trabecular architecture switched from rod-like to plate-like by azithromycin administration.

In this work, the efficacy of the subantibiotic dose of azithromycin (3.5 mg/kg) was equal to that of the antibiotic dosage (10 mg/kg) in all the parameters assessed. It is important to speculate whether the mode of action of azithromycin was antibacterial activities or immune-modulating effects on either the beneficial or the detrimental host response. The subantibiotic dose of azithromycin (3.5 mg/kg) was chosen based on the study of Wyuts et al. [28] which demonstrated a beneficial effect of azithromycin on bleomycin-induced pulmonary fibrosis. In addition, the antibiotic dosage of azithromycin used in the present study was adopted from previous works of Yamada et al. [29] and Bin et al. [30]. Azithromycin at a dosage of 10 mg/kg body weight in rodents produced plasma concentration equivalent to that achieved in humans after the recommended dose of 500 mg.

One important point to be discussed is the likelihood that the pharmacokinetics of azithromycin in rats does not simulate that seen in humans. In rodents, a higher dosage of azithromycin seems to be required than humans due to the more rapid liver metabolism, resulting in an elimination half-life of 2.3 h compared to one of 68 h in humans [31,32]. Hence, it is feasible that 10 mg/kg chosen as the antibiotic dose in this study could also be a subtherapeutic/subantibiotic dosage and did not seem to have any antimicrobial effect. The antibiotic effect of 10 mg/kg of azithromycin could therefore be excluded. The beneficial effects observed with azithromycin in experimental periodontitis appear to be mediated through its immunomodulatory properties that have already been demonstrated in other pathologies like cystic fibrosis and chronic obstructive pulmonary disease [22,23].

The accurate mechanisms by which the protective effect of azithromycin against alveolar bone destruction may be achieved are not well understood. It can be inferred from previous in vitro studies [16,33] that azithromycin might suppress the LPS-induced excessive generation of inflammatory cytokines, such as IL-1β, IL-6 and TNF-α, which are elevated in periodontally diseased sites and can induce bone destruction in periodontal disease.

To date, there are only a few evidences indicating that azithromycin has a potential to prevent bone resorption. Gannon et al. [34] demonstrated that azithromycin can suppress osteoclast differentiation from peripheral blood mononuclear cells and inhibit resorptive activity of osteoclasts in vitro. In addition, a preliminary case report by Hirsch [35] also provided the evidence of bone regeneration in periodontal defects following azithromycin therapy, even when no subgingival debridement had carried out. Erythromycin, a macrolide antibiotic closely associated with azithromycin, has also been reported to suppress osteocalcogenesis through direct influences on the RANKL-initiated NF-κB signaling [36].

Taken together, here we demonstrated the first evidence that the use of subantibiotic dosage of azithromycin could significantly attenuate alveolar bone destruction and improve trabecular microarchitectures in a rat model of experimental periodontitis. While further studies are necessary, we hypothesize that subantibiotic dose of azithromycin, due to its anti-inflammatory or immune-modulatory properties, could be utilized as a host response modulator for the therapeutic control of periodontitis in the future.

Conflict of interest

The authors report no conflicts of interest related to this study.

Acknowledgements

The present study was supported by a grant from the Korean Health Technology R & D Project, Ministry of Health and Welfare, Republic of Korea (A121041).

References
