Review

Effect of curcumin on circulating interleukin-6 concentrations: A systematic review and meta-analysis of randomized controlled trials

Giuseppe Derosa a,b,c,d, Pamela Maffioli a,e, Luis E. Simental-Mendía f, Simona Bo g, Amirhossein Sahebkar h,a

a Centre of Diabetes and Metabolic Diseases, Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
b Centre for the Study of Endocrine-Metabolic Pathophysiology and Clinical Research, University of Pavia, Pavia, Italy
c Centre for Prevention, Surveillance, Diagnosis and Treatment of Rare Diseases, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
d Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
e PhD School in Experimental Medicine, University of Pavia, Pavia, Italy
f Biomedical Research Unit, Mexican Social Security Institute, Durango, Mexico
g Department of Medical Sciences, University of Turin, Turin, Italy
h Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

A R T I C L E I N F O

Article history:
Received 30 April 2016
Received in revised form 2 July 2016
Accepted 3 July 2016
Available online 5 July 2016

Keywords:
Curcuma longa
Curcumin
Inflammation
Meta-analysis
Interleukin-6

A B S T R A C T

The aim of this meta-analysis was to evaluate the efficacy of curcuminoids supplementation on circulating concentrations of IL-6 in randomized controlled trials (RCTs).

The search included PubMed-Medline, Scopus, Web of Science and Google Scholar databases by up to November 01, 2015, to identify RCTs investigating the impact of curcuminoids on circulating IL-6 concentrations.

Nine RCTs comprising 10 treatment arms were found to be eligible for the meta-analysis. There was a significant reduction of circulating IL-6 concentrations following curcuminoids supplementation (WMD: −0.60 pg/mL, 95% CI: −1.06, −0.14, p = 0.011). Meta-regression did not suggest any significant association between the circulating IL-6 lowering effects of curcuminoids with either dose or duration of treatment.

There was a significant association between the IL-6-lowering activity of curcumin and baseline IL-6 concentration (slope: −0.51; 95% CI: −0.80, −0.23; p = 0.005).

This meta-analysis of RCTs suggested a significant effect of curcumin in lowering circulating IL-6 concentrations. This effect appears to be more evident in patients with higher degrees of systemic inflammation.

© 2016 Elsevier Ltd. All rights reserved.

Contents

1. Introduction .. 395
2. Methods ... 395
 2.1. Search strategy .. 395
 2.2. Study selection ... 395
 2.3. Data extraction ... 395
 2.4. Quality assessment ... 396
 2.5. Quantitative data synthesis .. 396
 2.6. Meta-regression ... 396

* Corresponding author at: Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, P.O. Box: 91779-48564, Iran.
E-mail addresses: sahebkar@ums.ac.ir, amir_amheb@yahoo.com (A. Sahebkar).

http://dx.doi.org/10.1016/j.phrs.2016.07.004
1043-6618/© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Curcuminoids (curcumin, demethoxycurcumin or curcumin I, bisdemethoxycurcumin or curcumin II) are the bioactive dietary polyphenols from turmeric (Curcuma Longa), the most popular spice in Indian cuisine and a major ingredient of curry powders [1]. Several reviews and meta-analyses showed that dietary curcuminoids have various biological activities [2–7], including anti-oxidant [8], anti-inflammatory [3], anti-microbial [9], anti-pruritic [10], hepatoprotective [11], anti-depressant [12], anti-arthritic [13], anti-ischemic [14], lipid-modifying [15,16], metabolic [17], hypouricemic [18], and neuroprotective properties [19]. They also mitigate endothelial dysfunction and improve several clinical and biochemical features of cancer [20–24], giving curcuminoids the potential to be used in clinical practice for a range of human diseases [3,25–27]. Curcuminoids have been tested as a therapeutic option in various diseases such as diabetes, cancer, arthritis, chronic inflammatory and cutaneous diseases, virus infections, Alzheimer’s disease and cardiovascular diseases via their multiple pleiotropic effects on genes and cell-signaling pathways [3,5–7]. Most studies on curcuminoids were in vitro and animal studies; clinical trials have indicated their safety, tolerability and non-toxicity but small number of patients were enrolled and the real efficacy in humans is at present questionable [3,5,6]. Furthermore, the low availability of these compounds requires the development of formulations with increased solubilization and resistant to inactivation by hydrolysis [5–7].

Cytokines are small molecules with protein or glycoprotein structure (8–80 kDa). They are products of activated immune cells that act as molecular signals between immune competent cells [26]. Among cytokines, interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) are major inducers of acute phase response [27]. In particular, IL-6 is a multi-functional cytokine that plays a central role in host defense due to its wide range of immune and hematopoietic activities and its potent ability to induce the acute phase response [28]. Interleukin-6 plays a role in the pathogenesis of many human diseases, such as multiple myeloma, rheumatoid arthritis, Castleman’s disease, AIDS, mesangial proliferative glomerulonephritis, psoriasis, Kaposi’s sarcoma, sepsis, and osteoporosis [28]. Considering its activities, IL-6 appeared to be a viable target for auto-immune disease. Inhibitors of IL-6 were successful in animal models of autoimmune disease paving the way for subsequent studies in humans.

Among agents able to inhibit expression and activity of IL-6, curcuminoids proved to have beneficial effects on IL-6 in several in-vitro and animal studies [29–34].

However, clinical studies regarding this effect of curcuminoids in humans have not been fully consistent [29–34]. Hence, the aim of the present meta-analysis was to evaluate the efficacy of curcuminoids supplementation on circulating concentrations of IL-6 in randomized controlled trials (RCTs) in order to obtain a conclusive result on this potential effect of the compound.

2. Methods

2.1. Search strategy

This study was designed according to the guidelines of the 2009 preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement [35]. Medline (http://www.ncbi.nlm.nih.gov/pubmed), SCOPUS, Web of Science and Google Scholar databases were searched using the following search terms in titles and abstracts (also in combination with MESH terms): (curcumin OR curcuminoid OR curcuminoids OR Curcuma OR Curcuma longa OR turmeric) AND (IL-6 OR interleukin-6 OR “interleukin 6” OR interleukin6 OR IL6 OR “IL 6”) AND (random OR randomized OR random OR randomization OR “randomized controlled trial” OR “randomized trial” OR “randomized study” OR “random number” OR placebo). The wild-card term “*” was used to increase the sensitivity of the search strategy. The search was limited to studies in English language. The literature was searched from inception to November 01, 2015.

2.2. Study selection

Original studies were included if they met the following inclusion criteria: (i) being a controlled trial with either parallel or cross-over design, (ii) investigating the impact of supplementation with curcuminoids or turmeric preparations with known amounts of curcuminoids on circulating IL-6 concentrations, and (iii) presentation of sufficient information on changes in circulating concentrations of IL-6 in the study groups. Exclusion criteria were (i) uncontrolled trials, (ii) inclusion of an active control group in the study design, (iii) observational studies with case-control, cross-sectional or cohort designs, (iv) using non-standardized turmeric extracts with unknown curcuminoids content, (v) trials with treatment durations of <2 weeks, and (vi) incomplete data on circulating concentrations of IL-6. In case of the latter item, authors of the article(s) were contacted and requested to provide necessary numerical data.

2.3. Data extraction

Eligible studies were reviewed and the following data were abstracted: 1) first author’s name; 2) year of publication; 3) study location; 4) study design; 5) number of participants in the curcuminoids and placebo groups; 5) type and dose of curcuminoid supplement used; 6) duration of treatment; 7) age, gender and body mass index (BMI) of study participants; 8) inclusion criteria defined in the study; 9) systolic and diastolic blood pressures; and 10) baseline and follow-up IL-6 concentrations.
2.4. Quality assessment

A systematic assessment of bias in the included studies was performed using the Cochrane criteria [36]. The items used for the assessment of each study were as follows: adequacy of sequence generation, allocation concealment, blinding, addressing of dropouts (incomplete outcome data), selective outcome reporting, and other potential sources of bias. According to the recommendations of the Cochrane Handbook, a judgment of “yes” indicated low risk of bias, while “no” indicated high risk of bias. Labeling an item as “unclear” indicated an unclear or unknown risk of bias.

2.5. Quantitative data synthesis

Meta-analysis was conducted using Comprehensive Meta-Analysis (CMA) V2 software (Biostat, NJ) [37]. Plasma IL-6 concentrations were collated in pg/mL. Net changes in measurements (change scores) were calculated as follows: measure at end of follow-up—measure at baseline. For crossover trials with a 2×2 design, each treatment arm was analysed separately, and net change in each arm was calculated by subtracting the value after control intervention from that reported after treatment. Standard deviations (SDs) of the mean difference were calculated using the following formula: $SD = \sqrt{SD_{pre-treatment}^2 + SD_{post-treatment}^2 - 2 \times SD_{pre-treatment} \times SD_{post-treatment}}$, assuming a correlation coefficient (R) = 0.5. Where standard error of the mean (SEM) was only reported, standard deviation (SD) was estimated using the following formula: $SD = SEM \times \sqrt{n}$, where n is the number of subjects.

A random-effects model (using DerSimonian-Laird method) and the generic inverse variance method were used to compensate for the heterogeneity of studies in terms of demographic characteristics of populations being studied and also differences in study design and duration of treatment. Heterogeneity was quantitatively assessed using I^2 index. In order to evaluate the influence of each study on the overall effect size, sensitivity analysis was conducted using leave-one-out method, i.e. removing one study each time and repeating the analysis [38,39].

2.6. Meta-regression

Random-effects meta-regression was performed using unrestricted maximum likelihood method to evaluate the association between calculated WMD and potential confounders including dose and duration of supplementation with curcumin, and baseline IL-6 levels.

2.7. Publication bias

Potential publication bias was explored using visual inspection of Begg’s funnel plot asymmetry, fail-safe N test, and Begg’s rank correlation and Egger’s weighted regression tests. Duval & Tweedie “trim and fill” method was used to adjust the analysis for the effects of publication bias [40].

3. Results

3.1. Flow and characteristics of included studies

Briefly, after multiple databases searching 149 published studies were identified and the abstracts were reviewed. Next, 32 non-original articles were excluded. From the remainder of articles, 85 did not meet the inclusion criteria after assessment of titles and abstracts and were also excluded. Thus, 32 full-text articles were carefully assessed and reviewed for eligibility; of which 23 studies were excluded for not measuring circulating IL-6 concentrations (n = 19), being non-clinical (n = 1), and having a short treatment duration (n = 3). Finally, 9 studies were eligible and included in the
systematic review and meta-analysis. The study selection process is shown in Fig. 1.

Data were pooled from 9 eligible studies [41–49] comprising 10 treatment arms which included 609 subjects, with 305 in the curcuminoids arm and 304 in the control arm (participants enrolled from the cross-over trial were considered in both arms). Included studies were published between 2008 and 2015. The dose of curcuminoids used changed in the various trials. One study reported effects of curcuminoids 200 mg/day [41], two studies reported effects of curcuminoids 300 mg/day [42,43], three studies of curcuminoids 1 g/day [44–46], two studies of curcuminoids 1.5 g/day [47,48], and one study curcuminoids 6 g/day [49]. The range of intervention periods was from 2 weeks [49] up to 8 months [41]. Study design of almost all included studies was parallel-group, except one which was cross-over design [44]. Selected studies enrolled subjects with osteoarthritis [41], knee osteoarthritis [48], oral lichen planus [49], obesity [44], type 2 diabetes [42,43], metabolic syndrome [46], sulfur mustard intoxication [47], and chronic pruritic skin lesions [45]. Demographic and biochemical characteristics of the evaluated studies are presented in Table 1.

Table 1. Characteristics of the included studies.

<table>
<thead>
<tr>
<th>Study name</th>
<th>Number of subjects</th>
<th>Intervention duration (weeks)</th>
<th>Daily dose of curcuminoids (mg)</th>
<th>Study design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganjali et al., 2014a</td>
<td>30</td>
<td>2</td>
<td>200</td>
<td>Parallel-group</td>
</tr>
<tr>
<td>Ganjali et al., 2014b</td>
<td>30</td>
<td>8</td>
<td>300</td>
<td>Parallel-group</td>
</tr>
<tr>
<td>Rahimnia et al., 2014</td>
<td>30</td>
<td>8</td>
<td>300</td>
<td>Parallel-group</td>
</tr>
<tr>
<td>Panahi et al., 2014</td>
<td>30</td>
<td>8</td>
<td>300</td>
<td>Parallel-group</td>
</tr>
<tr>
<td>Usharani et al., 2009</td>
<td>30</td>
<td>8</td>
<td>300</td>
<td>Parallel-group</td>
</tr>
<tr>
<td>Panahi et al., 2015</td>
<td>30</td>
<td>8</td>
<td>300</td>
<td>Parallel-group</td>
</tr>
<tr>
<td>Na et al., 2014</td>
<td>30</td>
<td>8</td>
<td>300</td>
<td>Parallel-group</td>
</tr>
<tr>
<td>Belcaro et al., 2010</td>
<td>30</td>
<td>8</td>
<td>300</td>
<td>Parallel-group</td>
</tr>
<tr>
<td>Chainani-Wu et al., 2012</td>
<td>30</td>
<td>8</td>
<td>300</td>
<td>Parallel-group</td>
</tr>
</tbody>
</table>

Table 2. Meta-analysis results.

<table>
<thead>
<tr>
<th>Study name</th>
<th>Point</th>
<th>Standard error</th>
<th>Variance</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Z-Value</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganjali et al., 2014a</td>
<td>-0.632</td>
<td>0.252</td>
<td>0.063</td>
<td>-1.125</td>
<td>-0.139</td>
<td>-2.512</td>
<td>0.012</td>
</tr>
<tr>
<td>Ganjali et al., 2014b</td>
<td>-0.675</td>
<td>0.240</td>
<td>0.058</td>
<td>-1.145</td>
<td>-2.205</td>
<td>-2.815</td>
<td>0.005</td>
</tr>
<tr>
<td>Rahimnia et al., 2014</td>
<td>-0.705</td>
<td>0.255</td>
<td>0.065</td>
<td>-1.204</td>
<td>-2.205</td>
<td>-2.786</td>
<td>0.006</td>
</tr>
<tr>
<td>Panahi et al., 2014</td>
<td>-0.662</td>
<td>0.304</td>
<td>0.093</td>
<td>-1.159</td>
<td>0.305</td>
<td>-1.644</td>
<td>0.009</td>
</tr>
<tr>
<td>Usharani et al., 2009</td>
<td>-0.473</td>
<td>0.237</td>
<td>0.056</td>
<td>-0.937</td>
<td>-0.008</td>
<td>-1.993</td>
<td>0.046</td>
</tr>
<tr>
<td>Panahi et al., 2015</td>
<td>-0.423</td>
<td>0.223</td>
<td>0.050</td>
<td>-0.881</td>
<td>0.014</td>
<td>-1.895</td>
<td>0.058</td>
</tr>
<tr>
<td>Na et al., 2014</td>
<td>-0.532</td>
<td>0.247</td>
<td>0.061</td>
<td>-1.017</td>
<td>-0.047</td>
<td>-2.149</td>
<td>0.032</td>
</tr>
<tr>
<td>Belcaro et al., 2010</td>
<td>-0.620</td>
<td>0.254</td>
<td>0.065</td>
<td>-1.119</td>
<td>-0.122</td>
<td>-2.440</td>
<td>0.015</td>
</tr>
<tr>
<td>Chainani-Wu et al., 2012</td>
<td>-0.640</td>
<td>0.239</td>
<td>0.057</td>
<td>-1.109</td>
<td>-0.170</td>
<td>-2.872</td>
<td>0.004</td>
</tr>
<tr>
<td>Panahi et al., 2012</td>
<td>-0.597</td>
<td>0.234</td>
<td>0.055</td>
<td>-1.057</td>
<td>-0.138</td>
<td>-2.549</td>
<td>0.011</td>
</tr>
</tbody>
</table>

3.3. Risk of bias assessment

According random sequence generation and allocation concealment, six studies were characterized by lack of information (42–46,48) and one study showed high risk of bias (41). Five studies had insufficient information (42,44–46,48) and two exhibited high risk of bias (46,48) with respect to blinding of participants and personnel. In addition, almost all included trials did not provide sufficient information of information of blinding of outcome assessment (41–46,48,49). However, all included studies showed low risk of bias according to selective reporting and incomplete outcome data. Details of the quality of bias assessment are shown in Table 2.

3.4. Effect of curcuminoids on circulating IL-6 concentrations

Overall, the impact of curcuminoids on circulating IL-6 concentrations was reported in 9 RCTs comprising 10 treatment arms. Meta-analysis suggested a significant reduction in plasma IL-6 concentrations following curcuminoids supplementation (WMD: −0.60 pg/mL, 95% CI: −1.06, −0.14, p = 0.011) (Fig. 2). Leave-one-out sensitivity analysis showed that this effect size is marginally sensitive to two studies (40,42) (Fig. 2). Subgroup analyses were performed to assess the impact of administered dose and duration of supplementation with curcuminoids, and application of bioavailability-enhanced formulations on the effect size (Fig. 2). Curcuminoids dose and formulation were not found to significantly

Fig. 2. Forest plot displaying weighted mean difference and 95% confidence intervals for the impact of curcuminoids on circulating IL-6 concentrations. Lower plot shows leave-one-out sensitivity analysis.
Table 1
Demographic characteristics of the included studies.

<table>
<thead>
<tr>
<th>Author</th>
<th>Study design</th>
<th>Target Population</th>
<th>Treatment duration</th>
<th>n</th>
<th>Study groups</th>
<th>Age, years</th>
<th>Female (n, %)</th>
<th>BMI (kg/m²)</th>
<th>Systolic blood pressure (mmHg)</th>
<th>Diastolic blood pressure (mmHg)</th>
<th>C-reactive protein (mg/l)</th>
<th>TNF-α (pg/ml)</th>
<th>IL-6 (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belcaro et al. (2010)</td>
<td>Open-label</td>
<td>Osteoarthritis</td>
<td>8 months</td>
<td>50</td>
<td>Curcumin 200 mg/day</td>
<td>43.6 ± 5.5</td>
<td>27 (54.0)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.38±</td>
<td></td>
</tr>
<tr>
<td>Chainani-Wu et al. (2012)</td>
<td>Randomized, double-blind, placebo-controlled</td>
<td>Oral lichen planus</td>
<td>2 weeks</td>
<td>50</td>
<td>Curcumin 6g/day</td>
<td>44.2 ± 6</td>
<td>22 (44.0)</td>
<td>8.0 ± 8.6</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2.5 (1.0–6.0)</td>
<td>2.17 (0.99–4)</td>
</tr>
<tr>
<td>Ganjali et al. (2014)</td>
<td>Randomized, double-blind, placebo-controlled</td>
<td>Obesity</td>
<td>1 month</td>
<td>10</td>
<td>Placebo Curcumin 1 g/day</td>
<td>56.2 ± 11.7</td>
<td>5 (50.0)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2.0 (1.0–3.0)</td>
<td>1.32 (0.99–1.73)</td>
</tr>
<tr>
<td>Na et al. (2014)</td>
<td>Randomized, double-blind, placebo-controlled</td>
<td>Type 2 diabetes</td>
<td>3 months</td>
<td>15</td>
<td>Placebo Curcumin 300 mg/day</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2.71 ± 1.50</td>
<td>2.72 ± 1.17</td>
<td>1.97 ± 3.58</td>
</tr>
<tr>
<td>Panahi et al. (2016)</td>
<td>Randomized, double-blind, placebo-controlled</td>
<td>Sulfur mustard intoxication</td>
<td>4 weeks</td>
<td>50</td>
<td>Placebo Curcumin 1.5 g/day</td>
<td>50.9 ± 7.2</td>
<td>0 (0.0)</td>
<td>28.0 ± 4.8</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2.68 ± 1.44</td>
<td>2.08 ± 0.97</td>
</tr>
<tr>
<td>Rahimnia et al. (2015)</td>
<td>Randomized, double-blind, placebo-controlled</td>
<td>Knee osteoarthritis</td>
<td>6 weeks</td>
<td>39</td>
<td>Placebo Curcumin 1.5 g/day</td>
<td>53.9 ± 8.6</td>
<td>0 (0.0)</td>
<td>25.9 ± 4.0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>8.54 ± 1.64</td>
<td>26.13 ± 4.01</td>
</tr>
<tr>
<td>Panahi et al. (2012)</td>
<td>Randomized, double-blind, placebo-controlled</td>
<td>Chronic pruritic skin lesions</td>
<td>4 weeks</td>
<td>21</td>
<td>Placebo Curcumin 1 g/day</td>
<td>57.5 ± 10.7</td>
<td>17 (80.9)</td>
<td>29.6 ± 4.4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>5.00 ± 0.00</td>
<td>31.99 ± 3.99</td>
</tr>
<tr>
<td>Sahebkar et al. (2015)</td>
<td>Randomized, double-blind, placebo-controlled</td>
<td>Metabolic syndrome</td>
<td>8 weeks</td>
<td>40</td>
<td>Placebo Curcumin 1 g/day</td>
<td>48.3 ± 8.5</td>
<td>0 (0.0)</td>
<td>25.4 ± 2.4</td>
<td>ND</td>
<td>ND</td>
<td>2.53 ± 0.49</td>
<td>79.24 ± 8.55</td>
<td>0.67 ± 0.12</td>
</tr>
<tr>
<td>Usharani et al. (2008)</td>
<td>Randomized, placebo-controlled</td>
<td>Type 2 diabetes</td>
<td>8 weeks</td>
<td>58</td>
<td>Placebo Curcumin 300 mg/day</td>
<td>43.4 ± 9.7</td>
<td>27 (54.0)</td>
<td>22.8 ± 5.3</td>
<td>135.7 ± 14.7</td>
<td>88.7 ± 8.1</td>
<td>7.10 ± 1.80</td>
<td>77.48 ± 6.54</td>
<td>1.79 ± 0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>Placebo Curcumin 300 mg/day</td>
<td>55.5 ± 10.7</td>
<td>11 (47.8)</td>
<td>24.6 ± 2.4</td>
<td>130.4 ± 18.5</td>
<td>81.8 ± 10.0</td>
<td>4.10 ± 2.10</td>
<td>4.53 ± 0.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>Placebo</td>
<td>49.7 ± 8.1</td>
<td>10 (47.6)</td>
<td>23.9 ± 2.3</td>
<td>126.3 ± 15.4</td>
<td>80.7 ± 7.4</td>
<td>3.60 ± 1.57</td>
<td>4.30 ± 2.38</td>
<td></td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD.
Abbreviations: ND, no data; BMI, body mass index; IQR, interquartile range.
* Distribution unspecified.
** Median (IQR).
Table 2
Quality of bias assessment of the included studies according to the Cochrane guidelines.

<table>
<thead>
<tr>
<th>Study</th>
<th>Random sequence generation</th>
<th>Allocation concealment</th>
<th>Selective reporting</th>
<th>Other bias</th>
<th>Blinding of participants and personnel</th>
<th>Blinding of outcome assessment</th>
<th>Incomplete outcome data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belcaro et al. (2010)</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>U</td>
<td>H</td>
<td>U</td>
<td>L</td>
</tr>
<tr>
<td>Chainani-Wu et al. (2012)</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>U</td>
<td>H</td>
<td>U</td>
<td>L</td>
</tr>
<tr>
<td>Ganjali et al. (2014)</td>
<td>U</td>
<td>U</td>
<td>L</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>L</td>
</tr>
<tr>
<td>Na et al. (2014)</td>
<td>U</td>
<td>U</td>
<td>L</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>L</td>
</tr>
<tr>
<td>Panahi et al. (2015)</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Rahimnia et al. (2015)</td>
<td>U</td>
<td>U</td>
<td>L</td>
<td>L</td>
<td>U</td>
<td>U</td>
<td>L</td>
</tr>
<tr>
<td>Panahi et al. (2012)</td>
<td>U</td>
<td>U</td>
<td>L</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>L</td>
</tr>
<tr>
<td>Sahebkar et al. (2015)</td>
<td>U</td>
<td>U</td>
<td>L</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>L</td>
</tr>
<tr>
<td>Usharani et al. (2008)</td>
<td>U</td>
<td>U</td>
<td>L</td>
<td>U</td>
<td>H</td>
<td>U</td>
<td>L</td>
</tr>
</tbody>
</table>

L, low risk of bias; H, high risk of bias; U, unclear risk of bias.

affect the IL-6-lowering effect of curcuminoids. However, there was a weaker reduction in circulating IL-6 concentrations in the subset of trials with <8 weeks of duration (WMD: −0.10 pg/mL, 95% CI: −0.61, 0.41, p = 0.705; Fig. 3) compared with the subset of studies lasting ≥8 weeks (WMD: −1.35 pg/mL, 95% CI: −2.13, −0.58, p = 0.001) (Fig. 3).

3.5. Meta-regression

Random-effects meta-regression was performed to evaluate if changes in circulating IL-6 concentrations are dependent to dose and duration of treatment. Meta-regression analysis did not suggest any significant association between changes in circulating IL-6 levels with either dose (slope: 0.0003; 95% CI: −0.0001, 0.0008; p = 0.172) or duration (slope: −0.01; 95% CI: −0.07, 0.05; p = 0.682) of treatment. There was a significant association between the IL-6-lowering activity of curcumin and baseline IL-6 concentration (slope: −0.51; 95% CI: −0.80, −0.23; p = 0.005) (Fig. 4).

3.6. Publication bias

The funnel plot of standard error versus effect size (mean difference) was slightly asymmetric. “trim and fill” correction suggested one potentially missing study on the left side of funnel plot (Fig. 5). Imputation for this potentially missing study yielded an effect size of −0.68 pg/mL (95% CI: −1.13, −0.22). The presence of publication bias was excluded by Egger’s linear regression (intercept = −1.14, standard error = 1.57; 95% CI = −4.76, 2.48, t = 0.73, df = 8, two-tailed p = 0.488) and Begg’s rank correlation (Kendall’s Tau with continuity correction = 0.04, z = −0.18, two-tailed p-value = 0.858) tests. The “fail-safe N” test showed that 109 studies would be needed to bring the WMD down to a non-significant (p > 0.05) value.

4. Discussion

In this meta-analysis, we recorded a significant reduction of circulating IL-6 concentrations following curcuminoids supplementation; this effect does not seem to be dose-dependent, in fact meta-regression did not suggest any significant association between the circulating IL-6-lowering effects of curcuminoids with either dose or duration of treatment.

Our results fit with several lines of evidences. At a molecular and cellular level, curcumin modulates tumor necrosis factor-α (TNF-α) expression and the cell signaling mediated by TNF-α by inhibition of p300/CREB-specific acetyltransferase which leads to repression of acetylation of histone/nonhistone proteins and hence repression of transcription [50,51]. Curcumin may also be a TNF blocker by binding to TNF directly [52]. Curcumin also inhibits cyclooxygenase-2, signal transducers and activators of transcription (STAT), cyclinD1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling pathways [53], as well as IL-1β and IL-6 expression inhibiting mitogen-activated protein kinase and NF-kB pathways [54].

As regards animal studies, the anti-inflammatory effect of curcumin was first demonstrated in acute and chronic models of inflammation in rats and mice [55], where curcumin suppressed carrageenan-induced edema. Since then, a consistent number of animal models of inflammation have benefited from treatment with curcumin and several mechanisms by which curcumin can exhibit anti-inflammatory activity have been hypothesized [7,52].

In human diseases, extensive clinical trials have addressed the pharmacokinetics, safety and efficacy of curcumin in patients with various inflammatory conditions. An exhaustive list of clinical trials testing the effects of curcumin in various human diseases has been reported by Gupta et al. [56]. Common to most of these studies have been the safety, tolerability and the ability of curcumin to modulate numerous signaling molecules leading to reduced local or even systemic inflammation [7,56].

Interleukin-6, a cytokine featuring redundancy and pleiotropic activity, is one of the most important inflammatory cytokines. Besides its multiple roles in the innate immune system, IL-6 is necessary for the differentiation of T-helper-17 cells [57]; as such, IL-6 is an important factor for the coordination of the innate and acquired immune response [58]. Anomalies in IL-6 production played a pathological role in several autoimmune and chronic inflammatory diseases; for this reason, it has been hypothesized that targeting IL-6 could be an approach to the treatment of these diseases [59]. Furthermore, several anti-IL-6/IL-6 receptor monoclonal antibodies developed for targeted therapy demonstrated promising results in both preclinical studies and clinical trials [60]. In addition, several treatments, including statins, metformin, aspirin, metotrextate, exercise, and others, showed to reduce systemic inflammation throughout reducing plasma IL-6 levels [61–65].

We reported that curcumin reduced IL-6 by a mean of 0.6 pg/mL; this results might be considered of interest if we look at previous studies in patients with evidence of low-grade systemic inflammation receiving effective consolidated therapies such as statins, metformin and aspirin [61–63]. In these studies, the degree of treatment-mediated IL-6 reduction was comparable to that we observed in the present meta-analysis. Thus, in patients with unstable angina simvastatin reduced plasma IL-6 by 0.4 pg/mL compared to placebo [61]; a 0.35 pg/mL reduction was obtained with metformin in patients with the metabolic syndrome [62]. Finally, in patients with chronic stable angina, aspirin reduced plasma IL-6 by 0.6 pg/mL compared to placebo [63]. As expected, greater plasma IL-6 reductions have been obtained in patients with high-grade systemic inflammation receiving the potent anti-inflammatory methotrextate [64]. In this regard, our meta-regression showed that there was a significant association between the IL-6-lowering activity of curcumin and baseline IL-6 concentration. Therefore, we must consider that the anti-inflammatory effect of curcumin might be
more evident in patients with a greater degree of systemic inflammation.

Overall, our results of a significant IL-6 reduction by curcumin supplementation support the idea that this nutraceutical may have a role in suppressing pro-inflammatory pathways linked with different diseases. Moreover, clinical trials with curcumin indicate safety, tolerability, and nontoxicity [56]. However, both the clinical efficacy in published trial [56] and the degree of IL-6 lowering in the present meta-analysis is questionable, based, first of all, on the small numbers of patients in each study. Additional limitations of the present meta-analysis need to be considered. Included studies were heterogeneous regarding population characteristics, study design, and duration of supplementation. Nevertheless, the impact of heterogeneity on estimated effect sizes was minimized by choosing a random-effects mode of analysis. Also, only three studies examined the impact of curcumin bioavailability-enhanced formulations on IL-6 [42,43,49]. Active scientific research has been carried out to improve curcumin's pharmacokinetics, systemic bioavailability, biological activity by loading curcumin into nanoformulations [56]; now it should be verified if these novel formulations have stronger IL-6 lowering efficacy. Finally, an overall 0.6 pg/mL reduction of circulating IL-6 might be considered modest; whether such a reduction might be
enough to have a clinical benefit it need to be evaluated in larger clinical trials.

5. Limitations and strengths

The present meta-analysis has some limitations. Included studies were heterogeneous regarding population characteristics, study design, and duration of supplementation. Nevertheless, the impact of heterogeneity on estimated effect sizes was minimized by choosing a random-effects mode of analysis. In addition, elevated serum IL-6 levels were not among the inclusion criteria of any of the studies considered for this meta-analysis. Finally, most of the included studies had relatively short follow-up durations. Although, no significant association between the IL-6-lowering effect of curcuminoids and treatment duration was observed, the effect of prolonged administration of curcuminoids on circulating IL-6 levels is still not clear. Finally, active scientific research has been carried out to improve curcuminoids’ pharmacokinetics, systemic bioavailability, and biological activity by loading curcuminoids into nanoformulations [3]; whether these novel formulations have

Fig. 4. Meta-regression plots of the association between mean changes in circulating IL-6 concentrations with dose (upper plot) and duration of supplementation with curcuminoids (middle plot) and with baseline IL-6 levels (lower plot). The size of each circle is inversely proportional to the size of the respective study.
Fig. 5. Funnel plot detailing publication bias in the studies reporting the impact of curcuminoids on circulating IL-6 concentrations.

6. Conclusion

In conclusion, the present meta-analysis of RCTs suggested a significant effect of curcumin in lowering circulating IL-6 concentrations. Despite considerable pharmacologic potential, the clinical

stronger IL-6 lowering efficacy should be determined. Finally, an overall 0.6 pg/mL reduction of circulating IL-6 might be considered modest; whether such a reduction might translate into a clinical benefit should be evaluated for each possible therapeutic indication in larger clinical trials.
efficacy of curcumin is still poorly recognized [3] and this polyphenol has not yet been approved for clinical use in humans. Further studies in larger populations are needed to investigate which patients are best suitable for curcumin supplementation and which formulation should be preferred to increase its anti-inflammatory effects.

References

