Molecular modeling of the binding modes of the iron-sulfur protein to the Jac1 co-chaperone from Saccharomyces cerevisiae by all-atom and coarse-grained approaches

Magdalena A. Mozolewska,1,2 Paweł Krupa,1,2 Harold A. Scheraga,2 and Adam Liwo1*

1 Faculty of Chemistry, University of Gdansk, Gdansk 80-308, Poland
2 Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301

ABSTRACT

The iron-sulfur protein 1 (Isu1) and the J-type co-chaperone Jac1 from yeast are part of a huge ATP-dependent system, and both interact with Hsp70 chaperones. Interaction of Isu1 and Jac1 is a part of the iron-sulfur cluster biogenesis system in mitochondria. In this study, the structure and dynamics of the yeast Isu1–Jac1 complex has been modeled. First, the complete structure of Isu1 was obtained by homology modeling using the I-TASSER server and YASARA software and thereafter tested for stability in the all-atom force field AMBER. Then, the known experimental structure of Jac1 was adopted to obtain initial models of the Isu1–Jac1 complex by using the ZDOCK server for global and local docking and the AutoDock software for local docking. Three most probable models were subsequently subjected to the coarse-grained molecular dynamics simulations with the UNRES force field to obtain the final structures of the complex. In the most probable model, Isu1 binds to the left face of the C-shaped Jac1 molecule by the β-sheet section of Isu1. Residues L105, L109, and Y163 of Jac1 have been assessed by mutation studies to be essential for binding (Ciesielski et al., J Mol Biol 2012; 417:1–12). These residues were also found, by UNRES/molecular dynamics simulations, to be involved in strong interactions between Isu1 and Jac1 in the complex. Moreover, N95, T98, P102, H112, V159, L167, and A170 of Jac1, not yet tested experimentally, were also found to be important in binding.

© 2015 Wiley Periodicals, Inc.

Key words: iron-sulfur cluster biogenesis; iron-sulfur protein 1; J-protein; Isu1–Jac1 interactions; UNited RESidue (UNRES) force field; homology modeling.

INTRODUCTION

The iron-sulfur (Fe-S) clusters (ISCs) occur in every living organism. They are among the oldest known catalyst cofactors. ISCs are involved in many activities that are essential for cell functioning, for example, in redox reactions, electron transfer, and catalysis of chemical reactions; they also stabilize the structures of many proteins. The ISCs play a crucial role in Saccharomyces cerevisiae and in bacterial systems. The release of an ISC from Isu1 and its transfer and incorporation into recipient apoproteins (Apo) is facilitated by the components of the ISC assembly machinery, including the ATP-dependent Hsp70 chaperone Ssq1 and the DnaJ-like co-chaperone Jac1.1

Isu1 is a protein, which was highly conserved during evolution. It can be found in many bacteria, and Isu1 equivalents can be found in all eukaryotes. The protein consists of 165 amino-acid residues, of which the first 27 residues are from the mitochondrial sequence. The structure of Isu1 has not yet been determined; however, the structure of its bacterial equivalent, IscU, has been

Additional Supporting Information may be found in the online version of this article.
Abbreviations: ATP, adenosine triphosphate; Fe-S, iron-sulfur; Hsp70, 70-kilodalton heat shock proteins; ISC, iron-sulfur cluster; Isd11, iron-sulfur protein biogenesis, desulfurase-interacting protein 11; I-TASSER, Iterative Threading ASSEmbly Refinement; Nfs1, cysteine desulfurase, mitochondrial; UNRES, UNited RESidue force field; YASARA, Yet Another Scientific Artificial Reality Application; Yfh1, yeast frataxin homolog

Grant sponsor: Foundation for Polish Science (project operated within the Foundation for Polish Science International PhD Projects (MPD) Programme co-funded by the EU European Regional Development Fund, Operational Program Innovative Economy 2007-2013); Grant number: MPDI/2010/5; Grant sponsor: U.S. National Institutes of Health; Grant number: GM-14312; Grant sponsor: U.S. National Science Foundation; Grant number: MCB10-19767.
*Correspondence to: Adam Liwo, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwoza 63, Gdansk 80-308, Poland. E-mail: adams@sun1.chem.univ.gda.pl
Received 2 December 2014; Revised 18 April 2015; Accepted 29 April 2015
Published online 13 May 2015 in Wiley Online Library (wileyonlinelibrary.com).
DOI: 10.1002/prot.24824
solved by X-ray crystallography. Isu1 contains one ISC (2Fe-2S) bonded with three cysteine residues, conserved among evolution in different organisms.

The structure of the Isu1 partner, Jac1, has already been determined by X-ray crystallography (PDB code: 3UO3) (Supporting Information Fig. S1). Jac1 contains 181 amino-acid residues, which form α-helices arranged in a Γ-shape. Like every J-protein, Jac1 contains a J-domain consisting of 74 residues (residues 11–84), in which the His-Pro-Asp motif responsible for binding to Hsp70 is highly conserved, and a C-terminal C-domain (residues 101–184) connected to the J-domain by a flexible linker (residues 85–100). The main function of Jac1 is to stimulate the ATPase activity of Hsp70, and move the Isu1 to Hsp70–Ssq1.

Experimental studies suggest that Jac1 interacts with Isu1 mainly through residues L105, L109, and Y163. However, it was reported that residues L104, K107, D110, D113, E113, and Q117 are also involved. Isu1 interacts with Ssq1 and Jac1 through two separate binding sites, one consisting of the LPPVK motif and another one consisting of residues L63, V72, and F85, respectively.

Although the mechanism of ISC biogenesis has not yet been discovered, it is clear that the formation of a complex between Isu1 and Jac1 is a crucial step in the transfer of the ISC to the target proteins (Supporting Information Fig. S2 and Supporting Information section Fe-S Cluster Cycle). However, despite the effort of many researchers, the structure of the complex and interactions that contribute to its formations have not been fully determined.

The aim of this work was to model the structure and stability of the Isu1–Jac1 complex, which is a crucial one in the entire process of ISC biogenesis in yeast. An initial attempt at modeling the binding mode of Isu1 to Jac1 was made recently by using a combination of template-based modeling and molecular docking. However, those studies were based on an incomplete Isu1 model (without the N-terminal H1 helix), and only limited rigid docking with the ZDOCK was carried out without assessment of the stability of the proposed complex.

Because no experimental structure of Isu1 is available, we used homology modeling to obtain the initial structure of this protein, which, after stability tests and refinement, was used to create the possible structures of the complex with Jac1 by using ZDOCK server and AutoDock software. To assess the stability of the resulting complexes, molecular dynamics (MD) simulations with the coarse-grained UNited RESidue (UNRES) force field (Fig. 1) developed in our laboratory were carried out. The simplification of the representation of polypeptide chains in the UNRES model enabled us to extend the time scale of simulations by orders of magnitude compared with that of all-atom simulations. We have already used the UNRES force field to investigate the transition from the closed (ADP-bound) to the open (ATP-bound) conformation of the DnaK Hsp70 chaperone from Escherichia coli. The structure of the open conformation was determined by X-ray crystallography after our work was published and was very close to that predicted by UNRES/MD. UNRES has also been featured in the last Community-Wide Experiment of the Assessment of Techniques for Protein Structure Prediction (CASP10), because it was one of the only two methods that found the correct domain packing of target 10663, which is remarkable because T0663 seemed to be a comparative-modeling and not a free-modeling target. Knowledge-based methods predicted the structure of each of the two domains of T0663 with a very good accuracy but none of them found correct packing of domains. Thus, UNRES seems to be an appropriate tool to study the phenomena that involve multidomain proteins, such as binding of molecular chaperones.

MATERIALS AND METHODS

Modeling the Isu1 structure

The sequence of Isu1 consists of two parts: residues 1–27 correspond to the transit peptide, which is the fragment responsible for directing the protein to the mitochondrion, whereas residues 28–165 constitute the main protein chain. Mature proteins that perform functions in organelles (for example, mitochondria) usually do not have the signal peptide. Therefore, in this study, only the 28–165 part of the sequence was used in homology modeling.

We used the Iterative Threading ASSEmbly Refinement (I-TASSER) server and the YASARA (Yet Another Scientific Artificial Reality Application) software to model the unknown structure of Isu1.

The best model was subjected to refinement (relaxation) by all-atom MD with the AMBER11 package. In the first step, the energy was minimized by the steepest-descent and conjugate-gradient algorithms. Combining these two algorithms provides the best results because the steepest-descent algorithm is more efficient and stable when far from the minimum (therefore, it brings the system to the neighborhood of the minimum quickly), whereas the conjugated-gradient is much more efficient in close proximity to the minimum. Subsequently, an all-atom MD simulation was performed with the AMBER FF99SB force field and the TIP3P water model. A 9 Å cut-off was imposed on the nonbonded interactions described by the Lennard–Jones potential, whereas particle-mesh Ewald summation was used to compute electrostatic interactions. The simulations were run in a periodic box with TIP3P water under isothermal–isobaric (NTP) conditions at T = 300 K and p = 1 atm. A simulation was run for 100 ns with a 2-fs time step; coordinates and energy were saved every 1000 steps.
Determining the binding modes of Isu1 to Jac1

To determine the probable binding modes of Isu1 and Jac1, we used ZDOCK33 and AutoDock 4.2.334 As initial structures, the Isu1 structure obtained by homology modeling and subsequent MD refinement (see section Modeling the Isu1 Structure under Materials and Methods) and the crystallographic structure3 of Jac1 (PDB code: 3UO3) were used. ZDOCK performed a global grid search in position and orientation of Jac1 with respect to Isu1, with local docking (more detailed docking in the space restricted to the C-terminal domain of Jac1) to explore the neighborhood of Jac1 with the lowest energy in more detail.33 The ZDOCK server is set to produce 2000 structures of complexes in global docking and a smaller subset in restricted docking.

After the extensive search of the docking space with ZDOCK was accomplished, more detailed exploration (local docking) was performed by AutoDock 4.2.3,34 which uses a grid search and a genetic algorithm to find the binding mode. The original code of AutoDock 4.2.3 is applicable to dock only small ligands to proteins, and we, therefore, modified it to extend it to protein–protein docking by increasing the maximum allowed ligand size and maximum number of grid points in each dimension (from 128 to 256) to maintain accuracy. The modified AutoDock program was set to generate 500 binding-site predictions. Modified versions of the AutoDock program have been successfully used in protein–protein docking in the past.35 Combining the coarse-grid search of the docking space with ZDOCK with finer local search with AutoDock (which, however, has been originally designed for docking small ligands) and with subsequent coarse-grained MD is likely to result in finding all reasonable structures of the Isu1–Jac1 complex.

All-atom MD simulations with AMBER force field

After obtaining the initial structures of the Isu1–Jac1 complex, we performed MD simulations with the AMBER force field. The number of water molecules was between 19,632 (for Model 3) and 22,625 (for Model 1). Each simulation was run for 100 ns, with a time step of 2 fs. Snapshots were saved every 1000 steps. The dimensions of the periodic boxes varied from about 63 Å × 89 Å × 115 Å for Model 3 to 105 Å × 106 Å × 66 Å for Model 1.

Coarse-grained MD simulations with UNRES

We used the speed-up advantage of the UNRES (UNited RESidue) coarse-grained physics-based force field developed in our laboratory to perform extensive MD simulations of the Isu1–Jac1 complex in a much larger time-scale than using all-atom force fields.

In the UNRES model,16,36–38 a polypeptide chain is represented by a sequence of united peptide groups (p), each of which is placed between the two consecutive Ca atoms, and united side chains (SC) (represented by ellipsoids of revolution) attached to the Ca atoms. Only the SC and p centers are interaction sites; the α-carbon atoms serve only to define the geometry of a chain (Fig. 1).

The UNRES force field originates from the potential of mean force of a protein in aqueous environment, which has been expanded into a cluster-cumulant series to give an implementable energy function. This energy function is given by Supporting Information Eq. (2).

Canonical coarse-grained MD simulations were run with the Langevin scheme and the VTS (variable time step) algorithm16,17 at temperature $T = 300$ K. To speed up the calculations, the viscosity of water was scaled down by a factor of 0.01 as in our earlier work16,17.
Sixteen independent trajectories were run for each simulation. Each trajectory consisted of 40 million steps of 4.89 fs length; this makes about 200 ns of total UNRES time. However, because of time-scale distortion, resulting from averaging over the secondary degrees of freedom and scaling down the water friction coefficient, the length of a simulation corresponds to at least 200 μs of real time. Each of the 16 trajectories was started from structures of one of three models.

Cluster analysis

Cluster analysis was performed by using Ward’s Minimum Variance method. This method provides the most balanced partitioning of the set of conformations. For each simulation, all 16 trajectories were analyzed simultaneously. The Cα root-mean-square deviation (RMSD) was chosen as a measure of the distance between the groups of conformations, and the cut-off value was 14 Å. With this cut-off value, the number of groups is reasonably low, whereas the structures that belong to one group are still similar. The relatively high value of the cut-off results from use of the minimum-variance method in which the cut-off is related to the distance between the centers of the clusters and not to that of the closest elements of two different clusters. Moreover, because a molecular complex is analyzed, even a small displacement of its components can result in a significant RMSD.

Mutations of Isu1 and Jac1 in the complex

To verify the importance of selected interactions between amino-acid residues in the obtained most probable model of the Isu1–Jac1 complexes (Model 3), selected residues of Jac1 were replaced with alanine residues, and the stability of the resulting complexes was assessed by MD simulations with the UNRES force field. The mutated residues were L105, L109, and Y163 for the first mutant, L105 and L109 for the second mutant, and Y163 for the third mutant, respectively. In the fourth mutation, the residues involved in the formation of salt bridges between Isu1 and Jac1 were mutated to alanine at the residues of Jac1 where Isu1 can potentially bind, and the residues involved in salt bridges were mutated. Each mutated complex was subjected to coarse-grained MD simulations using the variant of the UNRES force field parameterized with the 1GAB protein. The conditions of the simulations are those described in the section Coarse-Grained MD Simulations with UNRES.

RESULTS AND DISCUSSION

Modeling the Isu1 structure

Isu1 was modeled in a previous study; however, only part of the sequence of this protein had been considered, and the model was not optimized and validated by MD simulations. We, therefore, decided to model the structure of this protein for the purpose of our study, by using the state-of-the-art molecular modeling tools available.

The best 10 templates used for modeling by the I-TASSER server were from four different organisms: *Mus musculus*, *E. coli*, *Haemophilus influenzae*, and *Aquifex aeolicus*. Each of these templates is an IscU protein and is functionally related to Isu1. For almost every template, the percentage of sequence identity in the threading-aligned region with that of the query sequence was above 0.66. The sequence identity of the whole template chains with the query sequence was also above 0.66. The normalized Z-score of the threading alignments was above 2.7 for all templates, which means that the prediction is very good (Supporting Information Table S1).

The three proteins 3LVL, 1WFZ, and 2Z7E, which are analogs of the Isu1–IscU proteins from different organisms, were used as the main templates to predict a structure of Isu1 by YASARA. The sequence similarity of the templates to Isu1 is above 96% in all three, which shows that the model built on the basis of these proteins is probably a very good one (Supporting Information Table S3). The “hybrid” model was created based on the highest-score template (with a YASARA score of 191.13 in Supporting Information Table S3); however, information of structures of two template proteins mentioned above with the highest homology to the target sequence was also utilized.

The best model of Isu1 was selected based on the Z-score value (Table I) and on the quality of secondary structure (Supporting Information Fig. S4) of the predicted fragments of the protein. More details about the models are available in the Supporting Information section Modeling the Isu1 Structure.

Isu1–Jac1 docking

Using the predicted structure of Isu1, we carried out global docking of Isu1 to Jac1, for which we used the crystallographic structure of Jac1 with PDB code 3UO3. ZDOCK was implemented to identify the regions in Jac1 where Isu1 can potentially bind. Three main docking positions were identified (Fig. 2), by clustering 100 complexes, from a total of 2000, based on the highest values of the ZDOCK score function, of which only one (part C shown in Fig. 2), in which Isu1 makes contact with helices H4, H5, and H7 of Jac1, is consistent with the experimental data.

After the approximate docking position was found by global docking, the docking space was explored in more detail (by local docking), using ZDOCK and modified AutoDock. As a result, a set of 196 structures from restricted docking by using ZDOCK and a set of 500 structures from AutoDock were obtained. Structures
Table I
C-Score Values of the Models from I-TASSER and YASARA25,42,43

<table>
<thead>
<tr>
<th>Name</th>
<th>C-scorea</th>
<th>Exp. TM-scoreb</th>
<th>Exp. RMSD</th>
<th>No. of decoysc</th>
<th>Cluster densityd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>0.63</td>
<td>0.80 ± 0.09</td>
<td>3.2 ± 2.3</td>
<td>8308</td>
<td>0.4356</td>
</tr>
<tr>
<td>Model 2</td>
<td>−1.25</td>
<td>—</td>
<td>—</td>
<td>1263</td>
<td>0.0662</td>
</tr>
<tr>
<td>Model 3</td>
<td>−1.20</td>
<td>—</td>
<td>—</td>
<td>2327</td>
<td>0.0696</td>
</tr>
<tr>
<td>Model 4</td>
<td>0.04</td>
<td>—</td>
<td>—</td>
<td>4573</td>
<td>0.2398</td>
</tr>
<tr>
<td>YASARA model 1</td>
<td>−0.506e</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>YASARA model 2</td>
<td>−0.511e</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>YASARA model 3</td>
<td>−1.067e</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>YASARA model 4</td>
<td>−1.088e</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>YASARA hybrid</td>
<td>−0.193e</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

aC-score25 is a confidence score for estimating the quality of the predicted models.
bTM-score44 is a standard method for measuring structural similarity between two molecules.
cNumber of replicas (structures) in each model.
dThe cluster density (original term from Ref. 42) or cluster population is defined as the number of structures present in a given cluster. Higher cluster density means that the structure appears more often in the simulation trajectory and has a better quality model.
eIn YASARA45, the overall quality of a model is given by the Z-score value, which is a weighted average of the individual Z-scores corresponding to quality of dihedral angles and packing.

Figure 2
Three main positions of Isu1 (red) with respect to Jac1 (blue) from global docking with the ZDOCK server for the Isu1–Jac1 complex. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
from AutoDock were clustered based on RMSD and binding energy criteria with default cut-offs, 2 Å and 0.5 kcal/mol, respectively, obtaining nine clusters with populations higher than 2% of the total population ([mt]10 structures) (Supporting Information Fig. S7). It has to be noted that the binding energy calculated by AutoDock is distorted because of the simplifications that we made to handle such a large ligand. On that basis, we grouped nine representative structures from AutoDock and 10 structures from ZDOCK restricted docking with the highest values of the ZDOCK score function into three main clusters (Fig. 3). In the first model (Model 1) of the Isu1–Jac1 complex [Fig. 3(A)], Isu1 binds mainly to the H2 helix of Jac1. In the second model [Model 2, Fig. 3(B)], Isu1 binds mainly to the H5 helix of Jac1. In the third model [Model 3, Fig. 3(C)], the B1, B2, and B3 strands of Isu1 bind to Jac1. Model 3 [Fig. 3(C)] seemed to be the most probable (Supporting Information Table S4), because the interactions between residues of the B1, B2, and B3 β-strands of Isu1 and those of the H4, H5, and H7 helices in Jac1 were found experimentally.

Model 3 is also similar to a preliminary model obtained for the Isu1-Jac1 complex found in a previous study by homology modeling and docking. However, it should be noted that that model was not subjected to optimization or stability tests. Our studies also suggest that this is the most probable model, because this type of docking was the most common in the complexes obtained by local docking (Supporting Information Table S4). However, we did not have enough evidence to discard two other models [Fig. 3(B,C)]; at this stage, therefore, all three models were used for further investigation.

MD simulations of the Isu1–Jac1 complex

To analyze the resulting models of the Isu1–Jac1 complex, we initially tried to use all-atom MD, which is a popular method for relaxing and refining the structures of the protein–protein complexes obtained by crude molecular docking, and for the analysis of the dynamics of the system. Given the available computer resources, we could run only about 100 ns MD simulations with...
Figure 4
Representative structures of each of groups A to G of the Isu1-Jac1 complex. Jac1 is represented as a blue cartoon. Isu1 is shown as helices colored red and β-strands colored yellow. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
The structures of the Isu1–Jac1 complex obtained by local docking followed by UNRES/MD simulations, as described in the previous section, can be split into seven groups (Supporting Information Table S5) from which two (C and E in Fig. 4.) are the largest and the most populated in all models. During the MD simulations, the structures of Isu1 and Jac1 drifted from the initial structures of isolated molecules in order to form favorable interactions in the complex; the respective RMSD values are shown in Table II. It can be observed that the predicted structure of Isu1 is very stable and quite rigid (RMSD up to 5.292 Å, a value which is of the order of the resolution of the coarse-grained UNRES force field for proteins with this size). The structure of Jac1 is more flexible due to its two-domain composition; the RMSD of the whole structure is up to 9.829 Å.

Table II
RMSD Values of Structures of Isu1 and Jac1 in Complexes of Groups A–H from the Initial Structures of Isolated Components

<table>
<thead>
<tr>
<th>Group</th>
<th>Isu1</th>
<th>N-terminal</th>
<th>C-terminal</th>
<th>Whole</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.289</td>
<td>5.523</td>
<td>5.193</td>
<td>6.056</td>
</tr>
<tr>
<td>B</td>
<td>5.292</td>
<td>3.914</td>
<td>6.582</td>
<td>6.202</td>
</tr>
<tr>
<td>C</td>
<td>4.530</td>
<td>4.674</td>
<td>5.117</td>
<td>6.110</td>
</tr>
<tr>
<td>D</td>
<td>3.617</td>
<td>4.297</td>
<td>4.725</td>
<td>7.947</td>
</tr>
<tr>
<td>E</td>
<td>4.988</td>
<td>5.450</td>
<td>4.062</td>
<td>6.431</td>
</tr>
<tr>
<td>F</td>
<td>3.497</td>
<td>8.182</td>
<td>4.507</td>
<td>9.829</td>
</tr>
<tr>
<td>G</td>
<td>4.486</td>
<td>5.407</td>
<td>4.055</td>
<td>5.392</td>
</tr>
<tr>
<td>H</td>
<td>4.762</td>
<td>6.689</td>
<td>5.054</td>
<td>7.537</td>
</tr>
</tbody>
</table>

A detailed analysis of the interactions in Models 1, 2, and 3 is presented in the Supporting Information.

Model 1

Analysis of the clustering results of the Model 1 trajectories shows that Group A dominates (Fig. 6). Group A contains 42.6% of all structures in all time sections of the simulations and more than half of the structures at the end of the simulations. This group represents the structures in which Isu1 binds to Jac1 by the upper side of Isu1 (N-terminus) [Fig. 4(A)]. The remaining groups are less populated, and the second largest one (Group B), which contains 20.1% of all structures, is very similar in structure to Group A. The interactions between Isu1 and Jac1 in Group B involve the upper side and part of the β-sheets of Isu1 [Fig. 4(B)]. Even less populated is Group D (13.8% of all structures), in which part of the β-sheets of Isu1 bind to helix H5 of Jac1 [Fig. 4(D)]. It is worth noting that, in this group, Isu1 is rotated by 180° with respect to Jac1, an orientation different from that in all other groups. The binding patterns of Isu1 to Jac1 are visualized in the contact maps shown in Figure 5.

Model 2

For Model 2 of the Isu1–Jac1 complex (Fig. 6), it can be observed that Groups C and E together comprise the majority of structures (60.6% and 21.2% of all structures, respectively). Group C contains the structures in which helix H5 of Isu1 and part of the β-sheets of Isu1 bind to Jac1, whereas Group E [Fig. 4(E)] represents the structures for which the β-strands of Isu1 are connected to Jac1; these structures are very similar to Model 3 obtained by docking [Fig. 3(C)].

Model 3

Two main binding modes can be observed in MD simulations started from Model 3. These binding modes are represented by the largest Groups E (42.6% of all structures) and G (33.8% of all structures) respectively of Figure 6. Group E comprises the structures of the complex in which the β-sheet part of Isu1 binds to Jac1, as in the starting structure [Fig. 3(C)] but a little lower (below helix H5 from Jac1). Group G represents the structures in which Isu1 binds to Jac1 by the upper side (especially with helix H1 from Isu1) and part of the β-sheets of Isu1.

Summary of MD simulations of models 1, 2, and 3

Simulations started from Models 1, 2, and 3 often have resulted in conformations in which Isu1 binds to
Jac1 through the β-sheets and upper part of Isu1. These structures are represented by Group E and also are similar to those of Groups C (in which Isu1 and Jac1 also interact through the H5 helix of Isu1), D (they differ in the rotation of Isu1), and A (some interactions through β-sheets, mostly involving the upper part of Isu1) (Fig. 5). In Figure 6, the numbers of structures in each group, obtained by starting from the three models, are presented. Groups C and E are the most populated. The third most populated group is Group A, whose high population may be caused by lack of Fe-S clusters in our simulations. If the ISC were present, Isu1 probably would not be able to slide that much to interact only by the upper side.

We also observed strange structures of Isu1–Jac1 in trajectories started from Models 2 and 3, in which the structure of Jac1 partially unfolded to form a globular complex with Isu1 [Fig. 4(F)]. In this structure, the whole interaction interface is different from that in other groups (Fig. 5).

The residues that were found by the experiments to be important in binding Isu1 to Jac1 are found to be involved in binding in the simulations. They appear mostly in Groups C and E, which are similar to Model 3 generated by global and local docking. Therefore, Model 3 seems to be the most probable model of the Isu1–Jac1 complex. In addition to this, other residues whose roles in binding were not yet explored experimentally were predicted by our simulations to be involved in binding.
To confirm this, we performed UNRES/MD simulations for several variants of the complex in which residues that were found involved in binding were replaced with the alanine residues.

Assessment of the importance of interactions by mutational analysis

The initial structures of the mutants for the UNRES/MD simulations were obtained from the structure of Model 3 from the local docking by replacing one or more residues with alanine. The following variants of Jac1 were created: Y$_{163}$→A (hereafter referred to as Jac1Y), L$_{105}$→A and L$_{109}$→A (hereafter referred to as Jac1 LL), L$_{105}$→A, L$_{109}$→A, and Y$_{163}$→A (hereafter referred to as Jac1 LLY), and D$_{113}$→A, Q$_{117}$→A, D$_{119}$→A, and K$_{178}$→A in Jac1 and D$_{18}$→A, K$_{20}$→A, G$_{41}$→A, and R$_{39}$→A in Isu1 (hereafter referred to as Jac1 DQDKI–Isu1 DKGR). For each mutation, the trajectories were joined together, and cluster analysis was performed to determine the key structures that occurred during the simulations. After clustering, several groups of structures were obtained for each mutation, which we used to simplify further analysis.

The results of mutational analysis confirm that the L$_{105}$, L$_{109}$, and Y$_{163}$ residues of Jac1 are important for the binding of Isu1 to Jac1. Not every mutation has a direct influence on binding Isu1; the Jac1Y mutation influences Jac1 structure, which facilitates the change of the binding mode (Fig. 7). The general behavior of the Isu1–Jac1 system is that the most stable structures are those of Group E [Fig. 4(E)], which are similar to Model 3 [Fig. 4(E)] but, without mutations, the structure similar to Model 2 [Group C; Fig. 4(C)] is also observed in

Figure 7
Cumulative populations of all groups of conformations in all UNRES/MD simulations of all Isu1–Jac1 complexes with mutated Isu1. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 8
A scheme to illustrate the structural changes caused by particular mutations. The Jac1 protein is marked as a blue surface. Isu1 is in a cartoon representation, in which helices are colored red and β-sheets are colored yellow. As illustrated, during simulation, Model 2 goes to Model 3 and to Group E. After mutations, Model 3 goes to Group E and Group A. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
An analysis of the residues of Isu1 and Jac1 involved in the interactions between these two proteins based on UNRES/MD simulations started from three different orientations of wild type proteins (Models 1–3), and with mutations on Jac1 described earlier in the text reveal, that, in each group of structures, there are the same pairs of interacting residues (Fig. 5). Averaging the contact maps for Groups A–H showed that the deepest minima of residue–residue distance occur for the residues that were found important, based on mutation experiments, for the functioning of yeast cells (and, thereby, should be essential for binding Jac1 to Isu1)\(^3,15\); these are residues L\(^{105}\), L\(^{109}\), and Y\(^{163}\) of Jac1, which are located on the H5, H6, and H8 helices of Jac1, and residues L\(^{63}\), V\(^{72}\), and F\(^{94}\) of Isu1, which are located on the B1, B2, and B3 strands of Isu1, respectively. Residues L\(^{104}\), K\(^{107}\), D\(^{110}\), D\(^{113}\), E\(^{114}\), and Q\(^{117}\) of Jac1, which were also suggested to be involved in binding based on mutation experiments, also form contacts with the residues of Isu1 located at the binding interface (Fig. 5). Moreover, our study predicts that residues N\(^{95}\), T\(^{98}\), P\(^{102}\), and H\(^{112}\), located on the B1–B3 strands of Isu1, and V\(^{159}\), L\(^{170}\), A\(^{170}\), and W\(^{174}\), located on the H5 helix of Isu1, and, to a lesser extent, E\(^{91}\), V\(^{108}\), S\(^{116}\), and E\(^{160}\) of Isu1 also contribute to binding (Fig. 5). The possible involvement of helix H5 of Isu1 in binding is new with respect to the experimental work on the Jac1–Isu1 binding. The interface on Jac1 predicted by our study, in addition to the residues found experimentally important for binding, also comprises V\(^{64}\), A\(^{66}\), D\(^{71}\), M\(^{73}\), R\(^{74}\), K\(^{92}\), T\(^{93}\), and C\(^{96}\), and, to a lesser extent, G\(^{65}\), G\(^{70}\), G\(^{95}\), V\(^{135}\), K\(^{136}\), H\(^{138}\), C\(^{139}\), and L\(^{142}\). The binding interface is visualized in Figure 9. This observation extends the conclusions drawn from experimental studies regarding the structure of the complex and explains why the complex is stable even if the residues that could form intermolecular salt bridges are replaced with alanines.

CONCLUSIONS

In this work, a reliable model of the complete structure of the Isu1 protein was constructed by using homology modeling methods and tested for stability by MD simulations with the all-atom AMBER\(^{27}\) force field. The resulting Isu1 structure was subsequently docked to Jac1 by using the ZDOCK\(^{33}\) and AutoDock\(^{34}\) software. The resulting structures were grouped in three clusters, termed Models 1–3 (Fig. 3) and were subsequently used as initial structures for MD simulations with the UNRES force field.\(^{16,38,48}\) This flexible docking by UNRES/MD was necessary because the initial structures obtained by rigid docking could contain
unfavorable interactions (clashes) that could be eliminated upon small deformation of the components (that is, induced fitting). These calculations were only possible with use of a coarse-grained representation of the system, which accelerates the computation time by more than 3 orders of magnitude.17 To assess which interactions are important for the stability of the Isu1–Jac1 complex, UNRES/MD simulations were also carried out for the variants of the complex in which selected residues were replaced with alanines. As a result, eight groups (A–H) of structures of the Isu1–Jac1 complex with different orientation of the two proteins with respect to each other were obtained, of which Groups C and E were the most abundant (Fig. 6).

In the structures corresponding to the most populated Groups C and E, the β-sheet section and, partially, helix H5 of Isu1 are docked to helices of the outer side of the C-terminal domain of Jac1 [Fig. 4(C,E)]. This binding mode is in full agreement with the experimental findings that residues L105, L109, and Y163 of Jac1 and residues L63, V72, and F94 of Isu118 are functionally important. Additionally, in the experimental structure of the bacterial equivalent of the Isu1–Nfs1 complex (IscU–IscS) (PDB code: 3LVL),49 the crucial interface residues are located in the H1 helix and part of the β-sheets of the Isu1 analog. Experimental studies15 strongly suggest that the binding interface of Isu1 in the Isu1–Jac1 complex is very similar to that of Isu1 in the Isu1–Nfs1 complex because Jac1 competes with Nfs1 for a binding site.

In addition to confirming that the residues already found to be important for the Isu1–Jac1 binding by experimental mutagenesis studies, other interactions that could also be essential for the Isu1–Jac1 binding were also predicted by our simulations; these are discussed in detail in the section Analysis of the Binding Interface of the Isu1–Jac1 Complex. In particular, the simulations suggest that, apart from the B1–B3 strands, helix H5 of Isu1 could be involved in binding. These findings constitute a solid basis for further experimental mutagenesis studies directed at understanding the iron-sulfur cluster transfer.

ACKNOWLEDGMENTS

The authors thank Dr. Jarosław Marszałek (Intercollegiate Faculty of Biotechnology, University of Gda
ńsk and Medical University of Gda
ńsk, Poland) for helpful comments on the manuscript. This work was conducted by using the resources of (a) our 588-processor Beowulf cluster at the Baker Laboratory of Chemistry and Chemical Biology, Cornell University, (b) the Informatics Center of the Metropolitan Academic Network (IC MAN) in Gda
ńsk, (c) and our Beowulf cluster at the Faculty of Chemistry, University of Gda
ńsk.

REFERENCES